679 research outputs found

    Development of a multiblock procedure for automated generation of two-dimensional quadrilateral meshes of gear drives

    Get PDF
    This article describes a new multiblock procedure for automated generation of two-dimensional quadrilateral meshes of gear drives. The typical steps of the multiblock schemes have been investigated in depth to obtain a fast and simple way to mesh planar sections of gear teeth, allowing local mesh refinement and minimizing the appearance of distorted elements in the mesh. The proposed procedure is completed with two different mesh quality enhancement techniques. One of them is applied before the mesh is generated, and reduces the distortion of the mesh without increasing the computational time of the meshing process. The other one is applied once the mesh is generated, and reduces the distortion of the elements by means of a mesh smoothing method. The performance of the proposed procedure has been illustrated with several numerical examples, which demonstrate its ability to mesh different gear geometries under several meshing boundary conditions

    A hierarchical structure for automatic meshing and adaptive FEM analysis

    Get PDF
    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed

    Geometrical and topological issues in octree based automatic meshing

    Get PDF
    Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed

    Adaptive mesh refinement techniques for high-order finite-volume WENO schemes

    Get PDF
    This paper demonstrates the capabilities of Adaptive Mesh Refinement Techniques (AMR) on 2D hybrid unstructured meshes, for high order finite volume WENO methods. The AMR technique developed is a conformal adapting unstructured hybrid quadrilaterals and triangles (quads & tris) technique for resolving sharp flow features in accurate manner for steady-state and time dependent flow problems. In this method, the mesh can be refined or coarsened which depends on an error estimator, making decision at the parent level whilst maintaining a conformal mesh, the unstructured hybrid mesh refinement is done hierarchically.When a numerical method can work on a fixed conformal mesh this can be applied to do dynamic mesh adaptation. Two Refinement strategies have been devised both following a H-P refinement technique, which can be applied for providing better resolution to strong gradient dominated problems. The AMR algorithm has been tested on cylindrical explosion test and forward facing step problems

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    A simple procedure for generating locally refined 2D quadrilateral finite element meshes of gears

    Get PDF
    This article describes a new procedure for automated generation of two-dimensional locally refined quadrilateral meshes of gear drives. In this new procedure, a base mesh is generated using a multiblock meshing procedure. Then, selected elements of the base mesh are subdivided to obtain a refined mesh in certain parts of the gear teeth. The proposed procedure is completed with a mesh quality enhancement technique, which is based on an optimization-based smoothing. It also includes strategies that allow to automatically identify and refine those areas of the gear that are typically subjected to elevated stress gradients. The performance of the proposed procedure is illustrated with numerical examples, and it is compared to other existing meshing procedures, both in terms of mesh distortion and accuracy of the results
    corecore