85,895 research outputs found

    Hierarchical Task and Motion Planning in the Now

    Get PDF
    Workshop on Mobile Manipulation, IEEE International Conference on Robotics and AutomationIn this paper we outline an approach to the integration of task planning and motion planning that has the following key properties: It is aggressively hierarchical. It makes choices and commits to them in a top-down fashion in an attempt to limit the length of plans that need to be constructed, and thereby exponentially decrease the amount of search required. Importantly, our approach also limits the need to project the effect of actions into the far future. It operates on detailed, continuous geometric representations and partial symbolic descriptions. It does not require a complete symbolic representation of the input geometry or of the geometric effect of the task-level operations.This work was supported in part by the National Science Foundation under Grant No. 0712012

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Constructing Abstraction Hierarchies Using a Skill-Symbol Loop

    Full text link
    We describe a framework for building abstraction hierarchies whereby an agent alternates skill- and representation-acquisition phases to construct a sequence of increasingly abstract Markov decision processes. Our formulation builds on recent results showing that the appropriate abstract representation of a problem is specified by the agent's skills. We describe how such a hierarchy can be used for fast planning, and illustrate the construction of an appropriate hierarchy for the Taxi domain
    corecore