532 research outputs found

    Rekonstruktion und skalierbare Detektion und Verfolgung von 3D Objekten

    Get PDF
    The task of detecting objects in images is essential for autonomous systems to categorize, comprehend and eventually navigate or manipulate its environment. Since many applications demand not only detection of objects but also the estimation of their exact poses, 3D CAD models can prove helpful since they provide means for feature extraction and hypothesis refinement. This work, therefore, explores two paths: firstly, we will look into methods to create richly-textured and geometrically accurate models of real-life objects. Using these reconstructions as a basis, we will investigate on how to improve in the domain of 3D object detection and pose estimation, focusing especially on scalability, i.e. the problem of dealing with multiple objects simultaneously.Objekterkennung in Bildern ist für ein autonomes System von entscheidender Bedeutung, um seine Umgebung zu kategorisieren, zu erfassen und schließlich zu navigieren oder zu manipulieren. Da viele Anwendungen nicht nur die Erkennung von Objekten, sondern auch die Schätzung ihrer exakten Positionen erfordern, können sich 3D-CAD-Modelle als hilfreich erweisen, da sie Mittel zur Merkmalsextraktion und Verfeinerung von Hypothesen bereitstellen. In dieser Arbeit werden daher zwei Wege untersucht: Erstens werden wir Methoden untersuchen, um strukturreiche und geometrisch genaue Modelle realer Objekte zu erstellen. Auf der Grundlage dieser Konstruktionen werden wir untersuchen, wie sich der Bereich der 3D-Objekterkennung und der Posenschätzung verbessern lässt, wobei insbesondere die Skalierbarkeit im Vordergrund steht, d.h. das Problem der gleichzeitigen Bearbeitung mehrerer Objekte

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Design of Binocular Stereo Vision System Via CNN-based Stereo Matching Algorithm

    Get PDF
    Stereo vision is one of the representative technologies in the 3D camera, using multiple cameras to perceive the depth information in the three-dimensional space. The binocular one has become the most widely applied method in stereo vision. So in our thesis, we design a binocular stereo vision system based on an adjustable narrow-baseline stereo camera, which can simultaneously capture the left and right images belonging to a stereo image pair. The camera calibration and rectification techniques are firstly performed to get rectified stereo pairs, serving as the input to the subsequent step, that is, searching the corresponding points between the left and right images. The stereo matching algorithm resolves the correspondence problem and plays a crucial part in our system, which produces disparity maps targeted at predicting the depths with the help of the triangulation principle. We focus on the first stage of this algorithm, proposing a CNN-based approach to calculating the matching cost by measuring the similarity level between two image patches. Two kinds of network architectures are presented and both of them are based on the siamese network. The fast network employs the cosine metric to compute the similarity level at a satisfactory accuracy and processing speed. While the slow network is aimed at learning a new metric, making the disparity prediction slightly more precise but at the cost of spending way more image handling time and counting on more parameters. The output of either network is regarded as the initial matching cost, followed by a series of post-processing methods, including cross-based cost aggregation as well as semi-global cost aggregation. With the trick of Winner-Take-All (WTA), the raw disparity map is attained and it will undergo further refinement procedures containing interpolation and image filtering. The above networks are trained and validated on three standard stereo datasets: Middlebury, KITTI 2012, and KITTI 2015. The contrast tests of CNN-based methods and census transformation have demonstrated that the former approach outperforms the later one on the mentioned datasets. The algorithm based on the fast network is adopted in our devised system. To evaluate the performance of a binocular stereo vision system, two types of error criteria are come up with, acquiring the proper range of working distance under diverse baseline lengths

    Robust surface modelling of visual hull from multiple silhouettes

    Get PDF
    Reconstructing depth information from images is one of the actively researched themes in computer vision and its application involves most vision research areas from object recognition to realistic visualisation. Amongst other useful vision-based reconstruction techniques, this thesis extensively investigates the visual hull (VH) concept for volume approximation and its robust surface modelling when various views of an object are available. Assuming that multiple images are captured from a circular motion, projection matrices are generally parameterised in terms of a rotation angle from a reference position in order to facilitate the multi-camera calibration. However, this assumption is often violated in practice, i.e., a pure rotation in a planar motion with accurate rotation angle is hardly realisable. To address this problem, at first, this thesis proposes a calibration method associated with the approximate circular motion. With these modified projection matrices, a resulting VH is represented by a hierarchical tree structure of voxels from which surfaces are extracted by the Marching cubes (MC) algorithm. However, the surfaces may have unexpected artefacts caused by a coarser volume reconstruction, the topological ambiguity of the MC algorithm, and imperfect image processing or calibration result. To avoid this sensitivity, this thesis proposes a robust surface construction algorithm which initially classifies local convex regions from imperfect MC vertices and then aggregates local surfaces constructed by the 3D convex hull algorithm. Furthermore, this thesis also explores the use of wide baseline images to refine a coarse VH using an affine invariant region descriptor. This improves the quality of VH when a small number of initial views is given. In conclusion, the proposed methods achieve a 3D model with enhanced accuracy. Also, robust surface modelling is retained when silhouette images are degraded by practical noise

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Visualization of urban environments

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2007.Thesis (Ph. D.) -- Bilkent University, 2007.Includes bibliographical references leaves 108-118Modeling and visualization of large geometric environments is a popular research area in computer graphics. In this dissertation, a framework for modeling and stereoscopic visualization of large and complex urban environments is presented. The occlusion culling and view-frustum culling is performed to eliminate most of the geometry that do not contribute to the user’s final view. For the occlusion culling process, the shrinking method is employed but performed using a novel Minkowski-difference-based approach. In order to represent partial visibility, a novel building representation method, called the slice-wise representation is developed. This method is able to represent the preprocessed partial visibility with huge reductions in the storage requirement. The resultant visibility list is rendered using a graphics-processing-unit-based algorithm, which perfectly fits into the proposed slice-wise representation. The stereoscopic visualization depends on the calculated eye positions during walkthrough and the visibility lists for both eyes are determined using the preprocessed occlusion information. The view-frustum culling operation is performed once instead of two for both eyes. The proposed algorithms were implemented on personal computers. Performance experiments show that, the proposed occlusion culling method and the usage of the slice-wise representation increase the frame rate performance by 81 %; the graphics-processing-unit-based display algorithm increases it by an additional 315 % and decrease the storage requirement by 97 % as compared to occlusion culling using building-level granularity and not using the graphics hardware. We show that, a smooth and real-time visualization of large and complex urban environments can be achieved by using the proposed framework.Yılmaz, TürkerPh.D

    NASA Tech Briefs, June 2013

    Get PDF
    Topics include: Cloud Absorption Radiometer Autonomous Navigation System - CANS, Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis, Discrete Data Qualification System and Method Comprising Noise Series Fault Detection, Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s, Application Program Interface for the Orion Aerodynamics Database, Hyperspectral Imager-Tracker, Web Application Software for Ground Operations Planning Database (GOPDb) Management, Software Defined Radio with Parallelized Software Architecture, Compact Radar Transceiver with Included Calibration, Software Defined Radio with Parallelized Software Architecture, Phase Change Material Thermal Power Generator, The Thermal Hogan - A Means of Surviving the Lunar Night, Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers, Nano-Ceramic Coated Plastics, Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use, Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO, Dual-Compartment Inflatable Suitlock, Modular Connector Keying Concept, Genesis Ultrapure Water Megasonic Wafer Spin Cleaner, Piezoelectrically Initiated Pyrotechnic Igniter, Folding Elastic Thermal Surface - FETS, Multi-Pass Quadrupole Mass Analyzer, Lunar Sulfur Capture System, Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use, Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter, Qualification of UHF Antenna for Extreme Martian Thermal Environments, Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project, ISS Live!, Space Operations Learning Center (SOLC) iPhone/iPad Application, Software to Compare NPP HDF5 Data Files, Planetary Data Systems (PDS) Imaging Node Atlas II, Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit, Translating MAPGEN to ASPEN for MER, Support Routines for In Situ Image Processing, and Semi-Supervised Eigenbasis Novelty Detection

    Advanced Underwater Image Restoration in Complex Illumination Conditions

    Full text link
    Underwater image restoration has been a challenging problem for decades since the advent of underwater photography. Most solutions focus on shallow water scenarios, where the scene is uniformly illuminated by the sunlight. However, the vast majority of uncharted underwater terrain is located beyond 200 meters depth where natural light is scarce and artificial illumination is needed. In such cases, light sources co-moving with the camera, dynamically change the scene appearance, which make shallow water restoration methods inadequate. In particular for multi-light source systems (composed of dozens of LEDs nowadays), calibrating each light is time-consuming, error-prone and tedious, and we observe that only the integrated illumination within the viewing volume of the camera is critical, rather than the individual light sources. The key idea of this paper is therefore to exploit the appearance changes of objects or the seafloor, when traversing the viewing frustum of the camera. Through new constraints assuming Lambertian surfaces, corresponding image pixels constrain the light field in front of the camera, and for each voxel a signal factor and a backscatter value are stored in a volumetric grid that can be used for very efficient image restoration of camera-light platforms, which facilitates consistently texturing large 3D models and maps that would otherwise be dominated by lighting and medium artifacts. To validate the effectiveness of our approach, we conducted extensive experiments on simulated and real-world datasets. The results of these experiments demonstrate the robustness of our approach in restoring the true albedo of objects, while mitigating the influence of lighting and medium effects. Furthermore, we demonstrate our approach can be readily extended to other scenarios, including in-air imaging with artificial illumination or other similar cases
    corecore