2,591 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Designing SSI clusters with hierarchical checkpointing and single I/O space

    Get PDF
    Adopting a new hierarchical checkpointing architecture, the authors develop a single I/O address space for building highly available clusters of computers. They propose a systematic approach to achieving a single system image by integrating existing middleware support with the newly developed features.published_or_final_versio

    A Modular Platform for Adaptive Heterogeneous Many-Core Architectures

    Get PDF
    Multi-/many-core heterogeneous architectures are shaping current and upcoming generations of compute-centric platforms which are widely used starting from mobile and wearable devices to high-performance cloud computing servers. Heterogeneous many-core architectures sought to achieve an order of magnitude higher energy efficiency as well as computing performance scaling by replacing homogeneous and power-hungry general-purpose processors with multiple heterogeneous compute units supporting multiple core types and domain-specific accelerators. Drifting from homogeneous architectures to complex heterogeneous systems is heavily adopted by chip designers and the silicon industry for more than a decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalable number of heterogeneous processing units from different types (e.g. CPU, GPU, custom accelerator). This shifting in computing paradigm is associated with several system-level design challenges related to the integration and communication between a highly scalable number of heterogeneous compute units as well as SoC peripherals and storage units. Moreover, the increasing design complexities make the production of heterogeneous SoC chips a monopoly for only big market players due to the increasing development and design costs. Accordingly, recent initiatives towards agile hardware development open-source tools and microarchitecture aim to democratize silicon chip production for academic and commercial usage. Agile hardware development aims to reduce development costs by providing an ecosystem for open-source hardware microarchitectures and hardware design processes. Therefore, heterogeneous many-core development and customization will be relatively less complex and less time-consuming than conventional design process methods. In order to provide a modular and agile many-core development approach, this dissertation proposes a development platform for heterogeneous and self-adaptive many-core architectures consisting of a scalable number of heterogeneous tiles that maintain design regularity features while supporting heterogeneity. The proposed platform hides the integration complexities by supporting modular tile architectures for general-purpose processing cores supporting multi-instruction set architectures (multi-ISAs) and custom hardware accelerators. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the many-core platform can be achieved by using dynamic and partial reconfiguration (DPR) techniques. This dissertation realizes the proposed modular and adaptive heterogeneous many-core platform through three main contributions. The first contribution proposes and realizes a many-core architecture for heterogeneous ISAs. It provides a modular and reusable tilebased architecture for several heterogeneous ISAs based on open-source RISC-V ISA. The modular tile-based architecture features a configurable number of processing cores with different RISC-V ISAs and different memory hierarchies. To increase the level of heterogeneity to support the integration of custom hardware accelerators, a novel hybrid memory/accelerator tile architecture is developed and realized as the second contribution. The hybrid tile is a modular and reusable tile that can be configured at run-time to operate as a scratchpad shared memory between compute tiles or as an accelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed and implemented to be seamlessly integrated into the proposed tile-based platform. The third contribution deals with the self-adaptation features by providing a reconfiguration management approach to internally control the DPR process through processing cores (RISC-V based). The internal reconfiguration process relies on a novel DPR controller targeting FPGA design flow for RISC-V-based SoC to change the types and functionalities of compute tiles at run-time

    Hardware Design and Implementation of Role-Based Cryptography

    Get PDF
    Traditional public key cryptographic methods provide access control to sensitive data by allowing the message sender to grant a single recipient permission to read the encrypted message. The Need2KnowÂź system (N2K) improves upon these methods by providing role-based access control. N2K defines data access permissions similar to those of a multi-user file system, but N2K strictly enforces access through cryptographic standards. Since custom hardware can efficiently implement many cryptographic algorithms and can provide additional security, N2K stands to benefit greatly from a hardware implementation. To this end, the main N2K algorithm, the Key Protection Module (KPM), is being specified in VHDL. The design is being built and tested incrementally: this first phase implements the core control logic of the KPM without integrating its cryptographic sub-modules. Both RTL simulation and formal verification are used to test the design. This is the first N2K implementation in hardware, and it promises to provide an accelerated and secured alternative to the software-based system. A hardware implementation is a necessary step toward highly secure and flexible deployments of the N2K system

    Dynamic adaptive parallel architecture integrates advanced technologies for petaflops-scale computing

    Get PDF
    Teraflops-scale computing systems are becoming available to an increasingly broad range of users as the performance of the constituent processing elements increases and their relative cost (e.g. per Mflops) decreases. To the original DOE ASCI Red machine has been added the ASCI Blue systems and additional 1 Teraflops commercial systems at key national centers. Clusters of low cost PCs employing COTS network technologies (e.g. Beowulf-class systems) will make peak Teraflops performance available for less than 2M in the near future for certain classes of well behaved problems. Future larger systems include the Japanese Earth Simulator with a peak performance of 40 Teraflops and three larger ASCI systems anticipated to provide peak performance of 10, 30, and 100 Teraflops culminating in 2005. These systems use existing or near term conventional technologies and architectures with some specialized integration logic and networking. While the peak performance goals can be satisfied through this strategy over the next decade, two major challenges confront the high performance computing community: (1) how to aggressively accelerate performance to the operational regime beyond a Petaflops, and (2) how to achieve high efficiency for a wide range of applications. The Hybrid Technology Multithreaded (HTMT) computer is under development by an interdisciplinary team of investigators to address both problems through an innovative combination of advanced technologies and dynamic adaptive architecture. This paper describes the strategy embodied by the HTMT architecture and discusses the key factors that may enable it to achieve two to three orders of magnitude performance with respect to today's largest systems at a cost and power consumption of only a factor of two to three times those same present day systems

    Architectural support for task dependence management with flexible software scheduling

    Get PDF
    The growing complexity of multi-core architectures has motivated a wide range of software mechanisms to improve the orchestration of parallel executions. Task parallelism has become a very attractive approach thanks to its programmability, portability and potential for optimizations. However, with the expected increase in core counts, finer-grained tasking will be required to exploit the available parallelism, which will increase the overheads introduced by the runtime system. This work presents Task Dependence Manager (TDM), a hardware/software co-designed mechanism to mitigate runtime system overheads. TDM introduces a hardware unit, denoted Dependence Management Unit (DMU), and minimal ISA extensions that allow the runtime system to offload costly dependence tracking operations to the DMU and to still perform task scheduling in software. With lower hardware cost, TDM outperforms hardware-based solutions and enhances the flexibility, adaptability and composability of the system. Results show that TDM improves performance by 12.3% and reduces EDP by 20.4% on average with respect to a software runtime system. Compared to a runtime system fully implemented in hardware, TDM achieves an average speedup of 4.2% with 7.3x less area requirements and significant EDP reductions. In addition, five different software schedulers are evaluated with TDM, illustrating its flexibility and performance gains.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P, TIN2016-76635-C2-2-R and TIN2016-81840-REDT), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671697 and No. 671610. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047.Peer ReviewedPostprint (author's final draft
    • 

    corecore