26,922 research outputs found

    A Three-Step Methodology to Improve Domestic Energy Efficiency

    Get PDF
    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies have been developed to improve this efficiency. Next to large scale technologies such as windturbine parks, domestic technologies are developed. These domestic technologies can be divided in 1) Distributed Generation (DG), 2) Energy Storage and 3) Demand Side Load Management. Control algorithms optimizing a combination of these techniques can raise the energy reduction potential of the individual techniques. In this paper an overview of current research is given and a general concept is deducted. Based on this concept, a three-step optimization methodology is proposed using 1) offline local prediction, 2) offline global planning and 3) online local scheduling. The paper ends with results of simulations and field tests showing that the methodology is promising.\u

    CAPHE: time-domain and frequency-domain modeling of nonlinear optical components

    Get PDF

    Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry

    Full text link
    We present the Copupled Cluster (CC) method and the Density matrix Renormalization Grooup (DMRG) method in a unified way, from the perspective of recent developments in tensor product approximation. We present an introduction into recently developed hierarchical tensor representations, in particular tensor trains which are matrix product states in physics language. The discrete equations of full CI approximation applied to the electronic Schr\"odinger equation is casted into a tensorial framework in form of the second quantization. A further approximation is performed afterwards by tensor approximation within a hierarchical format or equivalently a tree tensor network. We establish the (differential) geometry of low rank hierarchical tensors and apply the Driac Frenkel principle to reduce the original high-dimensional problem to low dimensions. The DMRG algorithm is established as an optimization method in this format with alternating directional search. We briefly introduce the CC method and refer to our theoretical results. We compare this approach in the present discrete formulation with the CC method and its underlying exponential parametrization.Comment: 15 pages, 3 figure

    Synchronization and modularity in complex networks

    Full text link
    We investigate the connection between the dynamics of synchronization and the modularity on complex networks. Simulating the Kuramoto's model in complex networks we determine patterns of meta-stability and calculate the modularity of the partition these patterns provide. The results indicate that the more stable the patterns are, the larger tends to be the modularity of the partition defined by them. This correlation works pretty well in homogeneous networks (all nodes have similar connectivity) but fails when networks contain hubs, mainly because the modularity is never improved where isolated nodes appear, whereas in the synchronization process the characteristic of hubs is to have a large stability when forming its own community.Comment: To appear in the Proceedings of Workshop on Complex Systems: New Trends and Expectations, Santander, Spain, 5-9 June 200
    corecore