202 research outputs found

    Structure Preserving regularizer for Neural Style Transfer

    Get PDF
    The aim of the project is to generate an image in the style of the image by a well-known artist. The experiment will use artificial neural networks to transfer the style of one image onto another. In Computer Vision context: capturing the content invariant that is the style of an image and applying it on the content of another image. Initially captures the tensors that we need from the content and style image and then we pass the input image which will initially be an image with noise and our algorithm will try to minimize the loss between the input and content image and that between input and style image thus capturing the essence of both the images into one. The traditional method of style transfer generated image has an artistic effect that is the model successfully capture the style of the image but does not preserve the structural content of the image. The proposed method uses a segmented version of images to faithfully transfer the style to semantic similar content. Also, a regularizer term modified in loss function that helps in avoiding style spill over and have photographic results

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Visual Representation Learning with Limited Supervision

    Get PDF
    The quality of a Computer Vision system is proportional to the rigor of data representation it is built upon. Learning expressive representations of images is therefore the centerpiece to almost every computer vision application, including image search, object detection and classification, human re-identification, object tracking, pose understanding, image-to-image translation, and embodied agent navigation to name a few. Deep Neural Networks are most often seen among the modern methods of representation learning. The limitation is, however, that deep representation learning methods require extremely large amounts of manually labeled data for training. Clearly, annotating vast amounts of images for various environments is infeasible due to cost and time constraints. This requirement of obtaining labeled data is a prime restriction regarding pace of the development of visual recognition systems. In order to cope with the exponentially growing amounts of visual data generated daily, machine learning algorithms have to at least strive to scale at a similar rate. The second challenge consists in the learned representations having to generalize to novel objects, classes, environments and tasks in order to accommodate to the diversity of the visual world. Despite the evergrowing number of recent publications tangentially addressing the topic of learning generalizable representations, efficient generalization is yet to be achieved. This dissertation attempts to tackle the problem of learning visual representations that can generalize to novel settings while requiring few labeled examples. In this research, we study the limitations of the existing supervised representation learning approaches and propose a framework that improves the generalization of learned features by exploiting visual similarities between images which are not captured by provided manual annotations. Furthermore, to mitigate the common requirement of large scale manually annotated datasets, we propose several approaches that can learn expressive representations without human-attributed labels, in a self-supervised fashion, by grouping highly-similar samples into surrogate classes based on progressively learned representations. The development of computer vision as science is preconditioned upon the seamless ability of a machine to record and disentangle pictures' attributes that were expected to only be conceived by humans. As such, particular interest was dedicated to the ability to analyze the means of artistic expression and style which depicts a more complex task than merely breaking an image down to colors and pixels. The ultimate test for this ability is the task of style transfer which involves altering the style of an image while keeping its content. An effective solution of style transfer requires learning such image representation which would allow disentangling image style and its content. Moreover, particular artistic styles come with idiosyncrasies that affect which content details should be preserved and which discarded. Another pitfall here is that it is impossible to get pixel-wise annotations of style and how the style should be altered. We address this problem by proposing an unsupervised approach that enables encoding the image content in such a way that is required by a particular style. The proposed approach exchanges the style of an input image by first extracting the content representation in a style-aware way and then rendering it in a new style using a style-specific decoder network, achieving compelling results in image and video stylization. Finally, we combine supervised and self-supervised representation learning techniques for the task of human and animals pose understanding. The proposed method enables transfer of the representation learned for recognition of human poses to proximal mammal species without using labeled animal images. This approach is not limited to dense pose estimation and could potentially enable autonomous agents from robots to self-driving cars to retrain themselves and adapt to novel environments based on learning from previous experiences

    Revealing the Invisible: On the Extraction of Latent Information from Generalized Image Data

    Get PDF
    The desire to reveal the invisible in order to explain the world around us has been a source of impetus for technological and scientific progress throughout human history. Many of the phenomena that directly affect us cannot be sufficiently explained based on the observations using our primary senses alone. Often this is because their originating cause is either too small, too far away, or in other ways obstructed. To put it in other words: it is invisible to us. Without careful observation and experimentation, our models of the world remain inaccurate and research has to be conducted in order to improve our understanding of even the most basic effects. In this thesis, we1 are going to present our solutions to three challenging problems in visual computing, where a surprising amount of information is hidden in generalized image data and cannot easily be extracted by human observation or existing methods. We are able to extract the latent information using non-linear and discrete optimization methods based on physically motivated models and computer graphics methodology, such as ray tracing, real-time transient rendering, and image-based rendering

    Textures, Patterns and Surfaces in Color Films

    Full text link

    Multi-Concept Customization of Text-to-Image Diffusion

    Full text link
    While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms or performs on par with several baselines and concurrent works in both qualitative and quantitative evaluations while being memory and computationally efficient.Comment: Updated v2 with results on the new CustomConcept101 dataset https://www.cs.cmu.edu/~custom-diffusion/dataset.html Project webpage: https://www.cs.cmu.edu/~custom-diffusio

    Volume 5 Number 2

    Get PDF

    Acta Universitatis Sapientiae - Film and Media Studies 2016

    Get PDF
    • …
    corecore