1,136 research outputs found

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    Multi-paradigm modelling for cyber–physical systems: a descriptive framework

    Get PDF
    The complexity of cyber–physical systems (CPSS) is commonly addressed through complex workflows, involving models in a plethora of different formalisms, each with their own methods, techniques, and tools. Some workflow patterns, combined with particular types of formalisms and operations on models in these formalisms, are used successfully in engineering practice. To identify and reuse them, we refer to these combinations of workflow and formalism patterns as modelling paradigms. This paper proposes a unifying (Descriptive) Framework to describe these paradigms, as well as their combinations. This work is set in the context of Multi-Paradigm Modelling (MPM), which is based on the principle to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and workflows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these formalisms, workflows, and their combinations. One crucial part of the framework is the ability to capture the structural essence of a paradigm through the concept of a paradigmatic structure. This is illustrated informally by means of two example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented framework also identifies the need to establish whether a paradigm candidate follows, or qualifies as, a (given) paradigm. To illustrate the ability of the framework to support combining paradigms, the paper shows examples of both workflow and formalism combinations. The presented framework is intended as a basis for characterisation and classification of paradigms, as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundation for MPM tool development

    Linking Abstract Analysis to Concrete Design: A Hierarchical Approach to Verify Medical CPS Safety

    Get PDF
    Complex cyber-physical systems are typically hierarchically organized into multiple layers of abstraction in order to manage design complexity and provide verification tractability. Formal reasoning about such systems, therefore, necessarily involves the use of multiple modeling formalisms, verification paradigms, and concomitant tools, chosen as appropriate for the level of abstraction at which the analysis is performed. System properties verified using an abstract component specification in one paradigm must then be shown to logically follow from properties verified, possibly using a different paradigm, on a more concrete component description, if one is to claim that a particular component when deployed in the overall system context would still uphold the system properties. But, as component specifications at one layer get elaborated into more concrete component descriptions in the next, abstraction induced differences come to the fore, which have to be reconciled in some meaningful way. In this paper, we present our approach for providing a logical glue to tie distinct verification paradigms and reconcile the abstraction induced differences, to verify safety properties of a medical cyber-physical system. While the specifics are particular to the case example at hand - a high-level abstraction of a safety-interlock system to stop drug infusion along with a detailed design of a generic infusion pump - we believe the techniques are broadly applicable in similar situations for verifying complex cyber-physical system properties

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners

    Specification: The Biggest Bottleneck in Formal Methods and Autonomy

    Get PDF
    Advancement of AI-enhanced control in autonomous systems stands on the shoulders of formal methods, which make possible the rigorous safety analysis autonomous systems require. An aircraft cannot operate autonomously unless it has design-time reasoning to ensure correct operation of the autopilot and runtime reasoning to ensure system health management, or the ability to detect and respond to off-nominal situations. Formal methods are highly dependent on the specifications over which they reason; there is no escaping the “garbage in, garbage out” reality. Specification is difficult, unglamorous, and arguably the biggest bottleneck facing verification and validation of aerospace, and other, autonomous systems. This VSTTE invited talk and paper examines the outlook for the practice of formal specification, and highlights the on-going challenges of specification, from design-time to runtime system health management. We exemplify these challenges for specifications in Linear Temporal Logic (LTL) though the focus is not limited to that specification language. We pose challenge questions for specification that will shape both the future of formal methods, and our ability to more automatically verify and validate autonomous systems of greater variety and scale. We call for further research into LTL Genesis

    R2U2: Tool Overview

    Get PDF
    R2U2 (Realizable, Responsive, Unobtrusive Unit) is an extensible framework for runtime System HealthManagement (SHM) of cyber-physical systems. R2U2 can be run in hardware (e.g., FPGAs), or software; can monitorhardware, software, or a combination of the two; and can analyze a range of different types of system requirementsduring runtime. An R2U2 requirement is specified utilizing a hierarchical combination of building blocks: temporal formula runtime observers (in LTL or MTL), Bayesian networks, sensor filters, and Boolean testers. Importantly, the framework is extensible; it is designed to enable definitions of new building blocks in combination with the core structure. Originally deployed on Unmanned Aerial Systems (UAS), R2U2 is designed to run on a wide range of embedded platforms, from autonomous systems like rovers, satellites, and robots, to human-assistive ground systems and cockpits. R2U2 is named after the requirements it satisfies; while the exact requirements vary by platform and mission, the ability to formally reason about realizability, responsiveness, and unobtrusiveness is necessary for flight certifiability, safety-critical system assurance, and achievement of technology readiness levels for target systems. Realizability ensures that R2U2 is suficiently expressive to encapsulate meaningful runtime requirements while maintaining adaptability to run on different platforms, transition between different mission stages, and update quickly between missions. Responsiveness entails continuously monitoring the system under test, real-time reasoning, reporting intermediate status, and as-early-as-possible requirements evaluations. Unobtrusiveness ensures compliance with the crucial properties of the target architecture: functionality, certifiability, timing, tolerances, cost, or other constraints

    Event analytics

    Get PDF
    The process analysis toolkit (PAT) integrates the expressiveness of state, event, time, and probability-based languages with the power of model checking. PAT is a self-contained reasoning system for system specification, simulation, and verification. PAT currently supports a wide range of 12 different expressive modeling languages with many application domains and has attracted thousands of registered users from hundreds of organizations. In this invited talk, we will present the PAT system and its vision on “Event Analytics” (EA) which is beyond “Data Analytics”. The EA research is based on applying model checking to event planning, scheduling, prediction, strategy analysis and decision making. Various new EA research directions will be discussed.No Full Tex

    Falsification of Cyber-Physical Systems with Robustness-Guided Black-Box Checking

    Full text link
    For exhaustive formal verification, industrial-scale cyber-physical systems (CPSs) are often too large and complex, and lightweight alternatives (e.g., monitoring and testing) have attracted the attention of both industrial practitioners and academic researchers. Falsification is one popular testing method of CPSs utilizing stochastic optimization. In state-of-the-art falsification methods, the result of the previous falsification trials is discarded, and we always try to falsify without any prior knowledge. To concisely memorize such prior information on the CPS model and exploit it, we employ Black-box checking (BBC), which is a combination of automata learning and model checking. Moreover, we enhance BBC using the robust semantics of STL formulas, which is the essential gadget in falsification. Our experiment results suggest that our robustness-guided BBC outperforms a state-of-the-art falsification tool.Comment: Accepted to HSCC 202
    • …
    corecore