2,715 research outputs found

    Prospects of Nanotechnology in Clinical Immunodiagnostics

    Get PDF
    Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety

    Proteins in stool as biomarkers for non-invasive detection of colorectal adenomas with high risk of progression

    Get PDF
    Screening to detect colorectal cancer (CRC) in an early or premalignant state is an effective method to reduce CRC mortality rates. Current stool-based screening tests, e.g. fecal immunochemical test (FIT), have a suboptimal sensitivity for colorectal adenomas and difficulty distinguishing adenomas at high risk of progressing to cancer from those at lower risk. We aimed to identify stool protein biomarker panels that can be used for the early detection of high-risk adenomas and CRC. Proteomics data (LC–MS/MS) were collected on stool samples from adenoma (n = 71) and CRC patients (n = 81) as well as controls (n = 129). Colorectal adenoma tissue samples were characterized by low-coverage whole-genome sequencing to determine their risk of progression based on specific DNA copy number changes. Proteomics data were used for logistic regression modeling to establish protein biomarker panels. In total, 15 of the adenomas (15.8%) were defined as high risk of progressing to cancer. A protein panel, consisting of haptoglobin (Hp), LAMP1, SYNE2, and ANXA6, was identified for the detection of high-risk adenomas (sensitivity of 53% at specificity of 95%). Two panels, one consisting of Hp and LRG1 and one of Hp, LRG1, RBP4, and FN1, were identified for high-risk adenomas and CRCs detection (sensitivity of 66% and 62%, respectively, at specificity of 95%). Validation of Hp as a biomarker for high-risk adenomas and CRCs was performed using an antibody-based assay in FIT samples from a subset of individuals from the discovery series (n = 158) and an independent validation series (n = 795). Hp protein was significantly more abundant in high-risk adenoma FIT samples compared to controls in the discovery (p = 0.036) and the validation series (p = 9e-5). We conclude that Hp, LAMP1, SYNE2, LRG1, RBP4, FN1, and ANXA6 may be of value as stool biomarkers for early detection of high-risk adenomas and CRCs

    ZnO materials and surface tailoring for biosensing

    Full text link

    Methods for immobilizing receptors in microfluidic devices: A review

    Get PDF
    In this review article, we discuss state-of-the-art methods for immobilizing functional receptors in microfluidic devices. Strategies used to immobilize receptors in such devices are essential for the development of specific, sensitive (bio)chemical assays that can be used for a wide range of applications. In the first section, we review the principles and the chemistry of immobilization techniques that are the most commonly used in microfluidics. We afterward describe immobilization methods on static surfaces from microchannel surfaces to electrode surfaces with a particular attention to opportunities offered by hydrogel surfaces. Finally, we discuss immobilization methods on mobile surfaces with an emphasis on both magnetic and non-magnetic microbeads, and finally, we highlight recent developments of new types of mobile supports
    corecore