1,373 research outputs found

    Performance aAnalysis of HRO-B+ scheme for the nested mobile networks using OPNet

    Get PDF
    As a demand of accessing Internet is increasing dramatically, host mobility becomes insufficient to fulfill these requirements. However, to overcome this limitation, network mobility has been introduced. One of its implementation is NEMO Basic Support protocol which is proposed by Internet Engineering Task Force (IETF). In NEMO, one or more Mobile Router(s) manages the mobility of the network in a way that its nodes would be unaware of their movement. Although, it provides several advantages, it lacks many drawbacks in term of route optimization especially when multiple nested mobile networks are formed. This paper presents a new hierarchical route optimization scheme for nested mobile networks using Advanced Binding Update List (BUL+), which is called HRO-B+. From performance evaluation, it shows that this scheme performs better in terms of throughput, delay, response time, and traffic, and achieves optimal routing. Keywords: Mobile IPv6, Network Mobility (NEMO), Route Optimization, OPNe

    Performance analysis of HRO-B+ scheme for the nested mobile networks using OPNet

    Get PDF
    As a demand of accessing Internet is increasing dramatically, host mobility becomes insufficient to fulfill these requirements. However, to overcome this limitation, network mobility has been introduced. One of its implementation is NEMO Basic Support protocol which is proposed by Internet Engineering Task Force (IETF). In NEMO, one or more Mobile Router(s) manages the mobility of the network in a way that its nodes would be unaware of their movement. Although, it provides several advantages, it lacks many drawbacks in term of route optimization especially when multiple nested mobile networks are formed. This paper presents a new hierarchical route optimization scheme for nested mobile networks using Advanced Binding Update List (BUL+), which is called HRO-B+. From performance evaluation, it shows that this scheme performs better in terms of throughput, delay, response time, and traffic, and achieves optimal routing

    Practical Evaluation of a Network Mobility Solution

    Get PDF
    IFIP International Workshop on Networked Applications, Colmenarejo, Madrid/Spain, 6–8 July, 2005As the demand of ubiquitous Internet access and the current trend of all-IP communications keep growing, the necessity of a protocol that provides mobility management increases. The IETF has specified protocols to provide mobility support to individual nodes and networks. The Network Mobility (NEMO) Basic Support protocol is designed for providing mobility at IP level to complete networks, allowing a Mobile Network to change its point of attachment to the Internet, while maintaining ongoing sessions of the nodes of the network. All the mobility management is done by the mobile router whilst the nodes of the network are not even aware of the mobility. The main aim of this article is evaluating the performance of the NEMO Basic Support protocol by using our implementation. We also discuss the design of an implementation of the NEMO Basic Support protocol.Publicad

    Internames: a name-to-name principle for the future Internet

    Full text link
    We propose Internames, an architectural framework in which names are used to identify all entities involved in communication: contents, users, devices, logical as well as physical points involved in the communication, and services. By not having a static binding between the name of a communication entity and its current location, we allow entities to be mobile, enable them to be reached by any of a number of basic communication primitives, enable communication to span networks with different technologies and allow for disconnected operation. Furthermore, with the ability to communicate between names, the communication path can be dynamically bound to any of a number of end-points, and the end-points themselves could change as needed. A key benefit of our architecture is its ability to accommodate gradual migration from the current IP infrastructure to a future that may be a ubiquitous Information Centric Network. Basic building blocks of Internames are: i) a name-based Application Programming Interface; ii) a separation of identifiers (names) and locators; iii) a powerful Name Resolution Service (NRS) that dynamically maps names to locators, as a function of time/location/context/service; iv) a built-in capacity of evolution, allowing a transparent migration from current networks and the ability to include as particular cases current specific architectures. To achieve this vision, shared by many other researchers, we exploit and expand on Information Centric Networking principles, extending ICN functionality beyond content retrieval, easing send-to-name and push services, and allowing to use names also to route data in the return path. A key role in this architecture is played by the NRS, which allows for the co-existence of multiple network "realms", including current IP and non-IP networks, glued together by a name-to-name overarching communication primitive.Comment: 6 page

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode
    corecore