4,275 research outputs found

    Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains

    Get PDF
    Computing statistical quantities of interest of the solution of PDE on random domains is an important and challenging task in engineering. We consider the computation of these quantities by the perturbation approach. Especially, we discuss how third order accurate expansions of the mean and the correlation can numerically be computed. These expansions become even fourth order accurate for certain types of boundary variations. The correction terms are given by the solution of correlation equations in the tensor product domain, which can efficiently be computed by means of H -matrices. They have recently been shown to be an efficient tool to solve correlation equations with rough data correlations, that is, with low Sobolev smoothness or small correlation length, in almost linear time. Numerical experiments in three dimensions for higher order ansatz spaces show the feasibility of the proposed algorithm. The application to a non-smooth domain is also included

    Hierarchical matrix approximation for the uncertainty quantification of potentials on random domains

    Get PDF
    Computing statistical quantities of interest of the solution of PDE on random domains is an important and challenging task in engineering. We consider the computation of these quantities by the perturbation approach. Especially, we discuss how third order accurate expansions of the mean and the correlation can numerically be computed. These expansions become even fourth order accurate for certain types of boundary variations. The correction terms are given by the solution of correlation equations in the tensor product domain, which can efficiently be computed by means of H\mathcal{H}-matrices. They have recently been shown to be an efficient tool to solve correlation equations with rough data correlations, that is, with low Sobolev smoothness or small correlation length, in almost linear time. Numerical experiments in three dimensions for higher order ansatz spaces show the feasibility of the proposed algorithm. The application to a non-smooth domain is also included

    H-matrix accelerated second moment analysis for potentials with rough correlation

    Get PDF
    We consider the efficient solution of partial differential equationsfor strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution's two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth.Unfortunately, the problem becomes much more involved in case of rough data. We will show that the concept of the H-matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an H-matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the H-matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms
    corecore