3,134 research outputs found

    Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems

    Get PDF
    This paper investigates parameter estimation problems for multivariable controlled autoregressive autoregressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multivariable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification model into several subsystems based on the hierarchical identification principle and estimate the parameters using the coupled relationship between these subsystems. The simulation results show that the new algorithm can give more accurate parameter estimates of the M-CARARMA system than the M-GESG algorithm

    Performance-oriented model learning for data-driven MPC design

    Get PDF
    Model Predictive Control (MPC) is an enabling technology in applications requiring controlling physical processes in an optimized way under constraints on inputs and outputs. However, in MPC closed-loop performance is pushed to the limits only if the plant under control is accurately modeled; otherwise, robust architectures need to be employed, at the price of reduced performance due to worst-case conservative assumptions. In this paper, instead of adapting the controller to handle uncertainty, we adapt the learning procedure so that the prediction model is selected to provide the best closed-loop performance. More specifically, we apply for the first time the above "identification for control" rationale to hierarchical MPC using data-driven methods and Bayesian optimization.Comment: Accepted for publication in the IEEE Control Systems Letters (L-CSS

    Partially coupled gradient estimation algorithm for multivariable equation-error autoregressive moving average systems using the data filtering technique

    Get PDF
    System identification provides many convenient and useful methods for engineering modelling. This study targets the parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence of the coloured noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and to transform the original system into a filtered system with white noises. Then the filtered system is decomposed into several subsystems and a filtering-based partially-coupled generalised extended stochastic gradient algorithm is developed via the coupling concept. In contrast to the multivariable generalised extended stochastic gradient algorithm, the proposed algorithm can give more accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples

    Gradient based iterative solutions for general linear matrix equations

    Get PDF
    AbstractIn this paper, we present a gradient based iterative algorithm for solving general linear matrix equations by extending the Jacobi iteration and by applying the hierarchical identification principle. Convergence analysis indicates that the iterative solutions always converge fast to the exact solutions for any initial values and small condition numbers of the associated matrices. Two numerical examples are provided to show that the proposed algorithm is effective

    Decomposition-based recursive least squares identification methods for multivariate pseudo-linear systems using the multi-innovation

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis Group. This paper studies the parameter estimation algorithms of multivariate pseudo-linear autoregressive systems. A decomposition-based recursive generalised least squares algorithm is deduced for estimating the system parameters by decomposing the multivariate pseudo-linear autoregressive system into two subsystems. In order to further improve the parameter accuracy, a decomposition based multi-innovation recursive generalised least squares algorithm is developed by means of the multi-innovation theory. The simulation results confirm that these two algorithms are effective

    The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    Get PDF
    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed

    Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity

    Get PDF
    AbstractSince the stochastic gradient algorithm has a slower convergence rate, this letter presents a multi-innovation stochastic gradient algorithm for a class of dual-rate sampled systems with preload nonlinearity. The basic idea is to transform the dual-rate system model into an identification model which can use dual-rate data by using the polynomial transformation technique. A simulation example is provided to verify the effectiveness of the proposed method
    corecore