1,032 research outputs found

    Comparison of the qCON and qNOX indices for the assessment of unconsciousness level and noxious stimulation response during surgery

    Get PDF
    The objective of this work is to compare the performances of two electroencephalogram based indices for detecting loss of consciousness and loss of response to nociceptive stimulation. Specifically, their behaviour after drug induction and during recovery of consciousness was pointed out. Data was recorded from 140 patients scheduled for general anaesthesia with a combination of propofol and remifentanil. The qCON 2000 monitor (Quantium Medical, Barcelona, Spain) was used to calculate the qCON and qNOX. Loss of response to verbal command and loss of eye-lash reflex were assessed during the transition from awake to anesthetized, defining the state of loss of consciousness. Movement as a response to laryngeal mask (LMA) insertion was interpreted as the response to the nociceptive stimuli. The patients were classified as movers or non-movers. The values of qCON and qNOX were statistically compared. Their fall times and rise times defined at the start and at the end of the surgery were calculated and compared. The results showed that the qCON was able to predict loss of consciousness such as loss of verbal command and eyelash reflex better than qNOX, while the qNOX has a better predictive value for response to noxious stimulation such as LMA insertion. From the analysis of the fall and rise times, it was found that the qNOX fall time (median: 217 s) was significantly longer (p value <0.05) than the qCON fall time (median: 150 s). At the end of the surgery, the qNOX started to increase in median at 45 s before the first annotation related to response to stimuli or recovery of consciousness, while the qCON at 88 s after the first annotation related to response to stimuli or recovery of consciousness (p value <0.05). The indices qCON and qNOX showed different performances in the detection of loss of consciousness and loss of response to stimuli during induction and recovery of consciousness. Furthermore, the qCON showed faster decrease during induction. This behaviour is associated with the hypothesis that the loss of response to stimuli (analgesic effect) might be reached after the loss of consciousness (hypnotic effect). On the contrary, the qNOX showed a faster increase at the end of the surgery, associated with the hypothesis that a higher probability of response to stimuli might be reached before the recovery of consciousness.Postprint (author's final draft

    Advanced Signal Processing and Control in Anaesthesia

    Get PDF
    This thesis comprises three major stages: classification of depth of anaesthesia (DOA); modelling a typical patient’s behaviour during a surgical procedure; and control of DOAwith simultaneous administration of propofol and remifentanil. Clinical data gathered in theoperating theatre was used in this project. Multiresolution wavelet analysis was used to extract meaningful features from the auditory evoked potentials (AEP). These features were classified into different DOA levels using a fuzzy relational classifier (FRC). The FRC uses fuzzy clustering and fuzzy relational composition. The FRC had a good performance and was able to distinguish between the DOA levels. A hybrid patient model was developed for the induction and maintenance phase of anaesthesia. An adaptive network-based fuzzy inference system was used to adapt Takagi-Sugeno-Kang (TSK) fuzzy models relating systolic arterial pressure (SAP), heart rate (HR), and the wavelet extracted AEP features with the effect concentrations of propofol and remifentanil. The effect of surgical stimuli on SAP and HR, and the analgesic properties of remifentanil were described by Mamdani fuzzy models, constructed with anaesthetist cooperation. The model proved to be adequate, reflecting the effect of drugs and surgical stimuli. A multivariable fuzzy controller was developed for the simultaneous administration of propofol and remifentanil. The controller is based on linguistic rules that interact with three decision tables, one of which represents a fuzzy PI controller. The infusion rates of the two drugs are determined according to the DOA level and surgical stimulus. Remifentanil is titrated according to the required analgesia level and its synergistic interaction with propofol. The controller was able to adequately achieve and maintain the target DOA level, under different conditions. Overall, it was possible to model the interaction between propofol and remifentanil, and to successfully use this model to develop a closed-loop system in anaesthesia

    Robust fractional order PI control for cardiac output stabilisation

    Get PDF
    Drug regulatory paradigms are dependent on the hemodynamic system as it serves to distribute and clear the drug in/from the body. While focusing on the objective of the drug paradigm at hand, it is important to maintain stable hemodynamic variables. In this work, a biomedical application requiring robust control properties has been used to illustrate the potential of an autotuning method, referred to as the fractional order robust autotuner. The method is an extension of a previously presented autotuning principle and produces controllers which are robust to system gain variations. The feature of automatic tuning of controller parameters can be of great use for data-driven adaptation during intra-patient variability conditions. Fractional order PI/PD controllers are generalizations of the well-known PI/PD controllers that exhibit an extra parameter usually used to enhance the robustness of the closed loop system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia

    Get PDF
    In this paper, novel interval and general type-2 self-organizing fuzzy logic controllers (SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base in response to the controller's performance. The type-2 SOFLC uses type-2 fuzzy sets derived from real surgical data capturing patient variability in monitored physiological parameters during anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and comparative approaches for anesthesia control producing lower performance errors while using better defined rules in regulating anesthesia set points while handling the control uncertainties. The results are further supported by statistical analysis which also show that zSlices general type-2 SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance

    Monitoring the Depth of Anaesthesia

    Get PDF
    One of the current challenges in medicine is monitoring the patients’ depth of general anaesthesia (DGA). Accurate assessment of the depth of anaesthesia contributes to tailoring drug administration to the individual patient, thus preventing awareness or excessive anaesthetic depth and improving patients’ outcomes. In the past decade, there has been a significant increase in the number of studies on the development, comparison and validation of commercial devices that estimate the DGA by analyzing electrical activity of the brain (i.e., evoked potentials or brain waves). In this paper we review the most frequently used sensors and mathematical methods for monitoring the DGA, their validation in clinical practice and discuss the central question of whether these approaches can, compared to other conventional methods, reduce the risk of patient awareness during surgical procedures

    A computationally efficient Hill curve adaptation strategy during continuous monitoring of dose-effect relation in anaesthesia

    No full text
    This paper discusses a possibility to simplify the number of parameters in the Hill curve by exploiting special mathematical functions. This simplification is relevant when adaptation is required for personalized model-based medicine during continuous monitoring of dose-response values. A mathematical framework of the involved physiology and modelling by means of distributed parameter progressions has been employed. Convergence to a unique dynamic response is achieved, allowing simplifying assumptions with guaranteed solution. Discussion on its use and comparison with other adaptation mechanism is provided

    An Adaptive Monitoring Scheme for Automatic Control of Anaesthesia in dynamic surgical environments based on Bispectral Index and Blood Pressure.

    Get PDF
    During surgical procedures, bispectral index (BIS) is a well-known measure used to determine the patient's depth of anesthesia (DOA). However, BIS readings can be subject to interference from many factors during surgery, and other parameters such as blood pressure (BP) and heart rate (HR) can provide more stable indicators. However, anesthesiologist still consider BIS as a primary measure to determine if the patient is correctly anaesthetized while relaying on the other physiological parameters to monitor and ensure the patient's status is maintained. The automatic control of administering anesthesia using intelligent control systems has been the subject of recent research in order to alleviate the burden on the anesthetist to manually adjust drug dosage in response physiological changes for sustaining DOA. A system proposed for the automatic control of anesthesia based on type-2 Self Organizing Fuzzy Logic Controllers (T2-SOFLCs) has been shown to be effective in the control of DOA under simulated scenarios while contending with uncertainties due to signal noise and dynamic changes in pharmacodynamics (PD) and pharmacokinetic (PK) effects of the drug on the body. This study considers both BIS and BP as part of an adaptive automatic control scheme, which can adjust to the monitoring of either parameter in response to changes in the availability and reliability of BIS signals during surgery. The simulation of different control schemes using BIS data obtained during real surgical procedures to emulate noise and interference factors have been conducted. The use of either or both combined parameters for controlling the delivery Propofol to maintain safe target set points for DOA are evaluated. The results show that combing BIS and BP based on the proposed adaptive control scheme can ensure the target set points and the correct amount of drug in the body is maintained even with the intermittent loss of BIS signal that could otherwise disrupt an automated control system

    Control Strategy for Anaesthetic Drug Dosage with Interaction Among Human Physiological Organs Using Optimal Fractional Order PID Controller

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In this paper, an efficient control strategy for physiological interaction based anaesthetic drug infusion model is explored using the fractional order (FO) proportional integral derivative (PID) controllers. The dynamic model is composed of several human organs by considering the brain response to the anaesthetic drug as output and the drug infusion rate as the control input. Particle Swarm Optimisation (PSO) is employed to obtain the optimal set of parameters for PID/FOPID controller structures. With the proposed FOPID control scheme much less amount of drug-infusion system can be designed to attain a specific anaesthetic target and also shows high robustness for +/-50% parametric uncertainty in the patient's brain model

    Depth of anaesthesia assessment based on time and frequency features of simplified electroencephalogram (EEG)

    Get PDF
    Anaesthesiology is a medical subject focusing on the use of drugs and other methods to deprive patients’ sensation for discomfort in painful medical diagnosis or treatment. It is important to assess the depth of anaesthesia (DoA) accurately since a precise as- sessment is helpful for avoiding various adverse reactions such as intraoperative awareness with recall (underdosage), prolonged recovery and an increased risk of post- operative complications for a patient (overdosage). Evidence shows that the depth of anaesthesia monitoring using electroencephalograph (EEG) improves patient treat- ment outcomes by reducing the incidences of intra-operative awareness, minimizing anaesthetic drug consumption and resulting in faster wake-up and recovery. For an accurate DoA assessment, intensive research has been conducted in finding 'an ulti- mate index', and various monitors and DoA algorithms were developed. Generally, the limitations of the existing DoA monitors or latest DoA algorithms include unsatis- factory data filtering techniques, time delay and inflexible. The focus of this dissertation is to develop reliable DoA algorithms for accurate DoA assessment. Some novel time-frequency domain signal processing techniques, which are better suited for non-stationary EEG signals than currently established methods, have been proposed and applied to monitor the DoA based on simplified EEG signals based on plenty of programming work (including C and other programming language). The fast Fourier transform (FFT) and the discrete wavelet transforms are applied to pre-process EEG data in the frequency domain. The nonlocal mean, mobility, permu- tation entropy, Lempel-Ziv complexity, second order difference plot and interval feature extraction methods are modified and applied to investigate the scaling behaviour of the EEG in the time domain. We proposed and developed three new indexes for identifying, classifying and monitoring the DoA. The new indexes are evaluated by comparing with the most popular BIS index. Simulation results demonstrate that our new methods monitor the DoA in all anaesthesia states accurately. The results also demonstrate the advantages of proposed indexes in the cases of poor signal quality and the consistency with the anaesthetists’ records. These new indexes show a 3.1-59.7 seconds earlier time response than BIS during the change from awake to light anaesthesia and a 33-264 seconds earlier time response than BIS during the change from deep anaesthesia to moderate anaesthesia

    CLOSED-LOOP CONTROLLED TOTAL INTRA VENOUS ANAESTHESIA

    Get PDF
    Anaesthesia is important for both surgery and intensive care and intravenous anaesthetics are widely used to provide rapid onset, stable maintenance, and rapid recovery compared with inhaled anaesthetics. The aim of the project on which this thesis is based was to investigate a reliable and safe methodology for delivering total intravenous anaesthesia using closed-loop control technology and bispectral analysis of human electroencephalogram (EEG) waveform. In comparison with Target Controlled Infusion (TCI), drug effect is measured during drug infusion in closed loop anaesthesia (CLAN). This may provide superior safety, better patient care, and better quality of anaesthesia whilst relieving the clinician of the need to make recurrent and minor alterations to drug administration. However, the development of a CLAN system has been hindered by the Jack of a 'gold standard' for anaesthetic states and difficulties with patient variability in pharmacokinetic and pharmacodynamic modelling, and a new and generic mathematical model of a closed-loop anaesthesia system was developed for this investigation. By using this CLAN model, investigations on pharmacokinetic and pharmacodynamic variability existing in patients were carried out. A new control strategy that combines a Proportional, Integral, Derivative (PID) controller, bispectral analysis of EEG waveform and pharmacokinetic/ pharmacodynamic models was investigated. Based on the mathematical model, a prototype CLAN system, the first CLAN system capable of delivering both hypnotics and analgesics simultaneously for total intravenous anaesthesia, was developed. A Bispectral Index (BIS), derived from power spectral and bispectral analysis on EEG waveform, is used to measure depth of anaesthesia. A supervision system with built-in digital signal processing techniques was developed to compensate the non-linear characteristics inherent in the system while providing a comprehensive protection mechanism for patient safety. The CLAN system was tested in 78125 virtual patients modelled using published data. Investigations on intravenous anaesthesia induction and maintenance with the CLAN system were carried out in various clinical settings on 21 healthy volunteers and 15 patients undergoing surgery. Anaesthesia targets were achieved quickly and well maintained in all volunteers/patients except for 2 patients with clinically satisfactory anaesthesia quality.Derriford Hospita
    • …
    corecore