3,847 research outputs found

    The Hierarchical Control Method for Coordinating a Group of Connected Vehicles on Urban Roads

    Get PDF
    Safety, mobility and environmental impact are the three major challenges in today\u27s transportation system. As the advances in wireless communication and vehicle automation technologies, they have rapidly led to the emergence and development of connected and automated vehicles (CAVs). We can expect fully CAVs by 2030. The CAV technologies offer another solution for the issues we are dealing with in the current transportation system. In the meanwhile, urban roads are one of the most important part in the transportation network. Urban roads are characterized by multiple interconnected intersections. They are more complicated than highway traffic, because the vehicles on the urban roads are moving in multiple directions with higher relative velocity. Most of the traffic accidents happened at intersections and the intersections are the major contribution to the traffic congestions. Our urban road infrastructures are also becoming more intelligent. Sensor-embedded roadways are continuously gathering traffic data from passing vehicles. Our smart vehicles are meeting intelligent roads. However, we have not taken the fully advantages of the data rich traffic environment provided by the connected vehicle technologies and intelligent road infrastructures. The objective of this research is to develop a coordination control strategy for a group of connected vehicles under intelligent traffic environment, which can guide the vehicles passing through the intersections and make smart lane change decisions with the objective of improving overall fuel economy and traffic mobility. The coordination control strategy should also be robust to imperfect connectivity conditions with various connected vehicle penetration rate. This dissertation proposes a hierarchical control method to coordinate a group of connected vehicles travelling on urban roads with intersections. The dissertation includes four parts of the application of our proposed method: First, we focus on the coordination of the connected vehicles on the multiple interconnected unsignalized intersection roads, where the traffic signals are removed and the collision avoidance at the intersection area relays on the communication and cooperation of the connected vehicles and intersection controllers. Second, a fuel efficient hierarchical control method is proposed to control the connected vehicles travel on the signalized intersection roads. With the signal phase and timing (SPAT) information, our proposed approach is able to help the connected vehicles minimize red light idling and improve the fuel economy at the same time. Third, the research is extended form single lane to multiple lane, where the connected vehicle discretionary and cooperative mandatory lane change have been explored. Finally, we have analysis the real-world implementation potential of our proposed algorithm including the communication delay and real-time implementation analysis

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    Distance‐oriented hierarchical control and ecological driving strategy for HEVs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163948/1/els2bf00154.pd

    Optimal speed trajectory and energy management control for connected and automated vehicles

    Get PDF
    Connected and automated vehicles (CAVs) emerge as a promising solution to improve urban mobility, safety, energy efficiency, and passenger comfort with the development of communication technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). This thesis proposes several control approaches for CAVs with electric powertrains, including hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs), with the main objective to improve energy efficiency by optimising vehicle speed trajectory and energy management system. By types of vehicle control, these methods can be categorised into three main scenarios, optimal energy management for a single CAV (single-vehicle), energy-optimal strategy for the vehicle following scenario (two-vehicle), and optimal autonomous intersection management for CAVs (multiple-vehicle). The first part of this thesis is devoted to the optimal energy management for a single automated series HEV with consideration of engine start-stop system (SSS) under battery charge sustaining operation. A heuristic hysteresis power threshold strategy (HPTS) is proposed to optimise the fuel economy of an HEV with SSS and extra penalty fuel for engine restarts. By a systematic tuning process, the overall control performance of HPTS can be fully optimised for different vehicle parameters and driving cycles. In the second part, two energy-optimal control strategies via a model predictive control (MPC) framework are proposed for the vehicle following problem. To forecast the behaviour of the preceding vehicle, a neural network predictor is utilised and incorporated into a nonlinear MPC method, of which the fuel and computational efficiencies are verified to be effective through comparisons of numerical examples between a practical adaptive cruise control strategy and an impractical optimal control method. A robust MPC (RMPC) via linear matrix inequality (LMI) is also utilised to deal with the uncertainties existing in V2V communication and modelling errors. By conservative relaxation and approximation, the RMPC problem is formulated as a convex semi-definite program, and the simulation results prove the robustness of the RMPC and the rapid computational efficiency resorting to the convex optimisation. The final part focuses on the centralised and decentralised control frameworks at signal-free intersections, where the energy consumption and the crossing time of a group of CAVs are minimised. Their crossing order and velocity trajectories are optimised by convex second-order cone programs in a hierarchical scheme subject to safety constraints. It is shown that the centralised strategy with consideration of turning manoeuvres is effective and outperforms a benchmark solution invoking the widely used first-in-first-out policy. On the other hand, the decentralised method is proposed to further improve computational efficiency and enhance the system robustness via a tube-based RMPC. The numerical examples of both frameworks highlight the importance of examining the trade-off between energy consumption and travel time, as small compromises in travel time could produce significant energy savings.Open Acces

    Analysis, modeling, and control of half-bridge current-source converter for energy management of supercapacitor modules in traction applications

    Get PDF
    In this work, an in-depth investigation was performed on the properties of the half-bridge current-source (HBCS) bidirectional direct current (DC)-to-DC converter, used to interface two DC-link voltage sources with a high-voltage-rating mismatch. The intended implementation is particularly suitable for the interfacing of a supercapacitor (SC) module and a battery stack in a hybrid storage system(HSS) for automotive applications. It is demonstrated that the use of a synchronous rectification (SR) modulation scheme benefits both the power-stage performance (in terms of efficiency and reliability) and the control-stage performance (in terms of simplicity and versatility). Furthermore, an average model of the converter, valid for every operating condition, is derived and utilized as a tool for the design of the control system. This model includes the effects of parasitic elements (mainly the leakage inductance of the transformer) and of the converter snubbers. A 3 kW prototype of the converter was used for experimental validation of the converter modeling, design, and performance. Finally, a discussion on the control strategy of the converter operation is included

    An Optimization Approach for Energy Efficient Coordination Control of Vehicles in Merging Highways

    Get PDF
    Environmental concerns along with stronger governmental regulations regarding automotive fuel-economy and greenhouse-gas emissions are contributing to the push for development of more sustainable transportation technologies. Furthermore, the widespread use of the automobile gives rise to other issues such as traffic congestion and increasing traffic accidents. Consequently, two main goals of new technologies are the reduction of vehicle fuel consumption and emissions and the reduction of traffic congestion. While an extensive list of published work addresses the problem of fuel consumption reduction by optimizing the vehicle powertrain operations, particularly in the case of hybrid electric vehicles (HEV), approaches like eco-driving and traffic coordination have been studied more recently as alternative methods that can, in addition, address the problem of traffic congestion and traffic accidents reduction. This dissertation builds on some of those approaches, with particular emphasis on autonomous vehicle coordination control. In this direction, the objective is to derive an optimization approach for energy efficient and safe coordination control of vehicles in merging highways. Most of the current optimization-based centralized approaches to this problem are solved numerically, at the expense of a high computational load which limits their potential for real-time implementation. In addition, closed-form solutions, which are desired to facilitate traffic analysis and the development of approaches to address interconnected merging/intersection points and achieve further traffic improvements at the road-network level, are very limited in the literature. In this dissertation, through the application of the Pontryagin’s minimum principle, a closed-form solution is obtained which allows the implementation of a real-time centralized optimal control for fleets of vehicles. The results of applying the proposed framework show that the system can reduce the fuel consumption by up to 50% and the travel time by an average of 6.9% with respect to a scenario with not coordination strategy. By integrating the traffic coordination scheme with in-vehicle energy management, a two level optimization system is achieved which allows assessing the benefits of integrating hybrid electric vehicles into the road network. Regarding in-vehicle energy optimization, four methods are developed to improve the tuning process of the equivalent consumption optimization strategy (ECMS). First, two model predictive control (MPC)-based strategies are implemented and the results show improvements in the efficiency obtained with the standard ECMS implementation. On the other hand, the research efforts focus in performing analysis of the engine and electric motor operating points which can lead to the optimal tuning of the ECMS with reduced iterations. Two approaches are evaluated and even though the results in fuel economy are slightly worse than those for the standard ECMS, they show potential to significantly reduce the tuning time of the ECMS. Additionally, the benefits of having less aggressive driving profiles on different powertrain technologies such as conventional, plug-in hybrid and electric vehicles are studied

    Analyzing the Improvements of Energy Management Systems for Hybrid Electric Vehicles Using a Systematic Literature Review: How Far Are These Controls from Rule-Based Controls Used in Commercial Vehicles?

    Get PDF
    Featured Application This work is useful for researchers interested in the study of energy management systems for hybrid electric vehicles. In addition, it is interesting for institutions related to the market of this type of vehicle. The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs
    corecore