11,225 research outputs found

    Automatic document classification of biological literature

    Get PDF
    Background: Document classification is a wide-spread problem with many applications, from organizing search engine snippets to spam filtering. We previously described Textpresso, a text-mining system for biological literature, which marks up full text according to a shallow ontology that includes terms of biological interest. This project investigates document classification in the context of biological literature, making use of the Textpresso markup of a corpus of Caenorhabditis elegans literature. Results: We present a two-step text categorization algorithm to classify a corpus of C. elegans papers. Our classification method first uses a support vector machine-trained classifier, followed by a novel, phrase-based clustering algorithm. This clustering step autonomously creates cluster labels that are descriptive and understandable by humans. This clustering engine performed better on a standard test-set (Reuters 21578) compared to previously published results (F-value of 0.55 vs. 0.49), while producing cluster descriptions that appear more useful. A web interface allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept. Conclusions: We have demonstrated a simple method to classify biological documents that embodies an improvement over current methods. While the classification results are currently optimized for Caenorhabditis elegans papers by human-created rules, the classification engine can be adapted to different types of documents. We have demonstrated this by presenting a web interface that allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept

    A study of hierarchical and flat classification of proteins

    Get PDF
    Automatic classification of proteins using machine learning is an important problem that has received significant attention in the literature. One feature of this problem is that expert-defined hierarchies of protein classes exist and can potentially be exploited to improve classification performance. In this article we investigate empirically whether this is the case for two such hierarchies. We compare multi-class classification techniques that exploit the information in those class hierarchies and those that do not, using logistic regression, decision trees, bagged decision trees, and support vector machines as the underlying base learners. In particular, we compare hierarchical and flat variants of ensembles of nested dichotomies. The latter have been shown to deliver strong classification performance in multi-class settings. We present experimental results for synthetic, fold recognition, enzyme classification, and remote homology detection data. Our results show that exploiting the class hierarchy improves performance on the synthetic data, but not in the case of the protein classification problems. Based on this we recommend that strong flat multi-class methods be used as a baseline to establish the benefit of exploiting class hierarchies in this area

    Automatic multi-label subject indexing in a multilingual environment

    Get PDF
    This paper presents an approach to automatically subject index fulltext documents with multiple labels based on binary support vector machines(SVM). The aim was to test the applicability of SVMs with a real world dataset. We have also explored the feasibility of incorporating multilingual background knowledge, as represented in thesauri or ontologies, into our text document representation for indexing purposes. The test set for our evaluations has been compiled from an extensive document base maintained by the Food and Agriculture Organization (FAO) of the United Nations (UN). Empirical results show that SVMs are a good method for automatic multi- label classification of documents in multiple languages

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey
    corecore