3,570 research outputs found

    CERA-CRANIUM: a test bed for machine consciousness research

    Get PDF
    Proceeding of: International Workshop on Machine Consciousness 2009. Hong Kong, China. 15-17. June, 2009.This paper describes a novel framework designed as a test bed for machine consciousness cognitive models (MCCM). This MCCM experimentation framework is based on a generalpurpose cognitive architecture that can be integrated in different environments and confronted with different problem domains. The definition of a generic cognitive control system for abstract agents is the root of the versatility of the presented framework. The proposed control system, which is inspired in the major cognitive theories of consciousness, provides mechanisms for both sensory data acquisition and motor action execution. Sensory and motor data is represented in the proposed architecture using different level workspaces where percepts and actions are generated thanks to the competition and collaboration of specialized processors. Additionally, this cognitive architecture provides the means to modulate perception and behavior; in other words, it offers an interface for a higher control layer to drive the way percepts and actions are generated and how they interact with each other. This mechanism permits the experimentation with virtually any high level cognitive model of consciousness. An illustrative application scenario, autonomous explorer robots, is also reviewed in this work.This research has been supported by the Spanish Ministry of Science and Innovation under CICYT grant TRA2007-67374-C02-02.No publicad

    Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions

    Full text link
    A person's face discloses important information about their affective state. Although there has been extensive research on recognition of facial expressions, the performance of existing approaches is challenged by facial occlusions. Facial occlusions are often treated as noise and discarded in recognition of affective states. However, hand over face occlusions can provide additional information for recognition of some affective states such as curiosity, frustration and boredom. One of the reasons that this problem has not gained attention is the lack of naturalistic occluded faces that contain hand over face occlusions as well as other types of occlusions. Traditional approaches for obtaining affective data are time demanding and expensive, which limits researchers in affective computing to work on small datasets. This limitation affects the generalizability of models and deprives researchers from taking advantage of recent advances in deep learning that have shown great success in many fields but require large volumes of data. In this paper, we first introduce a novel framework for synthesizing naturalistic facial occlusions from an initial dataset of non-occluded faces and separate images of hands, reducing the costly process of data collection and annotation. We then propose a model for facial occlusion type recognition to differentiate between hand over face occlusions and other types of occlusions such as scarves, hair, glasses and objects. Finally, we present a model to localize hand over face occlusions and identify the occluded regions of the face.Comment: Accepted to International Conference on Affective Computing and Intelligent Interaction (ACII), 201

    Reframing PTSD for computational psychiatry with the active inference framework

    Get PDF
    Introduction: Recent advances in research on stress and, respectively, on disorders of perception, learning, and behaviour speak to a promising synthesis of current insights from (i) neurobiology, cognitive neuroscience and psychology of stress and post-traumatic stress disorder (PTSD), and (ii) computational psychiatry approaches to pathophysiology (e.g. of schizophrenia and autism). Methods: Specifically, we apply this synthesis to PTSD. The framework of active inference offers an embodied and embedded lens through which to understand neuronal mechanisms, structures, and processes of cognitive function and dysfunction. In turn, this offers an explanatory model of how healthy mental functioning can go awry due to psychopathological conditions that impair inference about our environment and our bodies. In this context, auditory phenomena - known to be especially relevant to studies of PTSD and schizophrenia - and traditional models of auditory function can be viewed from an evolutionary perspective based on active inference. Results: We assess and contextualise a range of evidence on audition, stress, psychosis, and PTSD, and bring some existing partial models of PTSD into multilevel alignment. Conclusions: The novel perspective on PTSD we present aims to serve as a basis for new experimental designs and therapeutic interventions that integrate fundamentally biological, cognitive, behavioural, and environmental factors

    Learning tactile skills through curious exploration

    Get PDF
    We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a biomimetic robot finger equipped with an array of microelectromechanical touch sensors. Instead of building tailored algorithms for solving a specific tactile task, we employ a more general curiosity-driven reinforcement learning approach that autonomously learns a set of motor skills in absence of an explicit teacher signal. In this approach, the acquisition of skills is driven by the information content of the sensory input signals relative to a learner that aims at representing sensory inputs using fewer and fewer computational resources. We show that, from initially random exploration of its environment, the robotic system autonomously develops a small set of basic motor skills that lead to different kinds of tactile input. Next, the system learns how to exploit the learned motor skills to solve supervised texture classification tasks. Our approach demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of engineered solutions for active tactile exploration and underactuated control, and provides a basis for studying developmental learning through intrinsic motivation in robots

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Theories of the development of human communication

    Get PDF
    This article considers evidence for innate motives for sharing rituals and symbols from animal semiotics, developmental neurobiology, physiology of prospective motor control, affective neuroscience and infant communication. Mastery of speech and language depends on polyrhythmic movements in narrative activities of many forms. Infants display intentional activity with feeling and sensitivity for the contingent reactions of other persons. Talk shares many of its generative powers with music and the other ‘imitative arts’. Its special adaptations concern the capacity to produce and learn an endless range of sounds to label discrete learned understandings, topics and projects of intended movement
    corecore