28 research outputs found

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Subject Index Volumes 1–200

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Graph theoretic generalizations of clique: optimization and extensions

    Get PDF
    This dissertation considers graph theoretic generalizations of the maximum clique problem. Models that were originally proposed in social network analysis literature, are investigated from a mathematical programming perspective for the first time. A social network is usually represented by a graph, and cliques were the first models of "tightly knit groups" in social networks, referred to as cohesive subgroups. Cliques are idealized models and their overly restrictive nature motivated the development of clique relaxations that relax different aspects of a clique. Identifying large cohesive subgroups in social networks has traditionally been used in criminal network analysis to study organized crimes such as terrorism, narcotics and money laundering. More recent applications are in clustering and data mining wireless networks, biological networks as well as graph models of databases and the internet. This research has the potential to impact homeland security, bioinformatics, internet research and telecommunication industry among others. The focus of this dissertation is a degree-based relaxation called k-plex. A distance-based relaxation called k-clique and a diameter-based relaxation called k-club are also investigated in this dissertation. We present the first systematic study of the complexity aspects of these problems and application of mathematical programming techniques in solving them. Graph theoretic properties of the models are identified and used in the development of theory and algorithms. Optimization problems associated with the three models are formulated as binary integer programs and the properties of the associated polytopes are investigated. Facets and valid inequalities are identified based on combinatorial arguments. A branch-and-cut framework is designed and implemented to solve the optimization problems exactly. Specialized preprocessing techniques are developed that, in conjunction with the branch-and-cut algorithm, optimally solve the problems on real-life power law graphs, which is a general class of graphs that include social and biological networks. Computational experiments are performed to study the effectiveness of the proposed solution procedures on benchmark instances and real-life instances. The relationship of these models to the classical maximum clique problem is studied, leading to several interesting observations including a new compact integer programming formulation. We also prove new continuous non-linear formulations for the classical maximum independent set problem which maximize continuous functions over the unit hypercube, and characterize its local and global maxima. Finally, clustering and network design extensions of the clique relaxation models are explored
    corecore