52,123 research outputs found

    Sznajd Complex Networks

    Full text link
    The Sznajd cellular automata corresponds to one of the simplest and yet most interesting models of complex systems. While the traditional two-dimensional Sznajd model tends to a consensus state (pro or cons), the assignment of the contrary to the dominant opinion to some of its cells during the system evolution is known to provide stabilizing feedback implying the overall system state to oscillate around null magnetization. The current article presents a novel type of geographic complex network model whose connections follow an associated feedbacked Sznajd model, i.e. the Sznajd dynamics is run over the network edges. Only connections not exceeding a maximum Euclidean distance DD are considered, and any two nodes within such a distance are randomly selected and, in case they are connected, all network nodes which are no further than DD are connected to them. In case they are not connected, all nodes within that distance are disconnected from them. Pairs of nodes are then randomly selected and assigned to the contrary of the dominant connectivity. The topology of the complex networks obtained by such a simple growth scheme, which are typically characterized by patches of connected communities, is analyzed both at global and individual levels in terms of a set of hierarchical measurements introduced recently. A series of interesting properties are identified and discussed comparatively to random and scale-free models with the same number of nodes and similar connectivity.Comment: 10 pages, 4 figure

    Locally Biased Galaxy Formation and Large Scale Structure

    Get PDF
    We examine the influence of the morphology-density(MD) relation and a wide range of simple models for biased galaxy formation on statistical measures of large scale structure. We contrast the behavior of local biasing models, in which the efficiency of galaxy formation is determined by density, geometry, or velocity dispersion of the local mass distribution, with that of non-local biasing models, in which galaxy formation is modulated coherently over scales larger than the galaxy correlation length. If morphological segregation of galaxies is governed by a local MD relation, then the correlation function of E/S0 galaxies should be steeper and stronger than that of spiral galaxies on small scales, as observed, while on large scales the correlation functions of E/S0 and spiral galaxies should have the same shape but different amplitudes. Similarly, all of our local bias models produce scale-independent amplification of the correlation function and power spectrum in the linear and mildly non-linear regimes; only a non-local biasing mechanism can alter the shape of the power spectrum on large scales. Moments of the biased galaxy distribution retain the hierarchical pattern of the mass moments, but biasing alters the values and scale-dependence of the hierarchical amplitudes S3 and S4. Pair-weighted moments of the galaxy velocity distribution are sensitive to the details of the biasing prescription. The non-linearity of the relation between galaxy density and mass density depends on the biasing prescription and the smoothing scale, and the scatter in this relation is a useful diagnostic of the physical parameters that determine the bias. Although the sensitivity of galaxy clustering statistics to the details of biasing is an obstacle to testing cosmological models, it is an asset for testing galaxy formation theories.Comment: 47 pages including 17 Figures, submitted to Ap

    Simultaneous Coherent Structure Coloring facilitates interpretable clustering of scientific data by amplifying dissimilarity

    Get PDF
    The clustering of data into physically meaningful subsets often requires assumptions regarding the number, size, or shape of the subgroups. Here, we present a new method, simultaneous coherent structure coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance regarding the underlying structure of the data. sCSC performs a sequence of binary splittings on the dataset such that the most dissimilar data points are required to be in separate clusters. To achieve this, we obtain a set of orthogonal coordinates along which dissimilarity in the dataset is maximized from a generalized eigenvalue problem based on the pairwise dissimilarity between the data points to be clustered. This sequence of bifurcations produces a binary tree representation of the system, from which the number of clusters in the data and their interrelationships naturally emerge. To illustrate the effectiveness of the method in the absence of a priori assumptions, we apply it to three exemplary problems in fluid dynamics. Then, we illustrate its capacity for interpretability using a high-dimensional protein folding simulation dataset. While we restrict our examples to dynamical physical systems in this work, we anticipate straightforward translation to other fields where existing analysis tools require ad hoc assumptions on the data structure, lack the interpretability of the present method, or in which the underlying processes are less accessible, such as genomics and neuroscience
    • …
    corecore