19,189 research outputs found

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect. Currently computer-aided detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions". The goal of this paper is to explore the possibility of using hierarchical clustering based segmentation (HSC), as a perceptual aid, to improve the performance of the reader

    Screen Content Image Segmentation Using Sparse-Smooth Decomposition

    Full text link
    Sparse decomposition has been extensively used for different applications including signal compression and denoising and document analysis. In this paper, sparse decomposition is used for image segmentation. The proposed algorithm separates the background and foreground using a sparse-smooth decomposition technique such that the smooth and sparse components correspond to the background and foreground respectively. This algorithm is tested on several test images from HEVC test sequences and is shown to have superior performance over other methods, such as the hierarchical k-means clustering in DjVu. This segmentation algorithm can also be used for text extraction, video compression and medical image segmentation.Comment: Asilomar Conference on Signals, Systems and Computers, IEEE, 2015, (to Appear

    Boundary Extraction in Images Using Hierarchical Clustering-based Segmentation

    Get PDF
    Hierarchical organization is one of the main characteristics of human segmentation. A human subject segments a natural image by identifying physical objects and marking their boundaries up to a certain level of detail [1]. Hierarchical clustering based segmentation (HCS) process mimics this capability of the human vision. The HCS process automatically generates a hierarchy of segmented images. The hierarchy represents the continuous merging of similar, spatially adjacent or disjoint, regions as the allowable threshold value of dissimilarity between regions, for merging, is gradually increased. HCS process is unsupervised and is completely data driven. This ensures that the segmentation process can be applied to any image, without any prior information about the image data and without any need for prior training of the segmentation process with the relevant image data. The implementation details of HCS process have been described elsewhere in the author's work [2]. The purpose of the current study is to demonstrate the performance of the HCS process in outlining boundaries in images and its possible application in processing medical images. [1] P. Arbelaez. Boundary Extraction in Natural Images Using Ultrametric Contour Maps. Proceedings 5th IEEE Workshop on Perceptual Organization in Computer Vision (POCV'06). June 2006. New York, USA. [2] A. N. Selvan. Highlighting Dissimilarity in Medical Images Using Hierarchical Clustering Based Segmentation (HCS). M. Phil. dissertation, Faculty of Arts Computing Engineering and Sciences Sheffield Hallam Univ., Sheffield, UK, 2007.</p

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect [1]. Currently Computer-Aided Detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions" [2]. The goal of this paper is to explore the possibility of using Hierarchical Clustering based Segmentation (HCS) [3], as a perceptual aid, to improve the performance of the reader

    Gene expression reliability estimation through cluster-based analysis

    Get PDF
    Gene expression is the fundamental control of the structure and functions of the cellular versatility and adaptability of any organisms. The measurement of gene expressions is performed on images generated by optical inspection of microarray devices which allow the simultaneous analysis of thousands of genes. The images produced by these devices are used to calculate the expression levels of mRNA in order to draw diagnostic information related to human disease. The quality measures are mandatory in genes classification and in the decision-making diagnostic. However, microarrays are characterized by imperfections due to sample contaminations, scratches, precipitation or imperfect gridding and spot detection. The automatic and efficient quality measurement of microarray is needed in order to discriminate faulty gene expression levels. In this paper we present a new method for estimate the quality degree and the data's reliability of a microarray analysis. The efficiency of the proposed approach in terms of genes expression classification has been demonstrated through a clustering supervised analysis performed on a set of three different histological samples related to the Lymphoma's cancer diseas
    • …
    corecore