1,867 research outputs found

    Hierarchical and Frequency-Aware Model Predictive Control for Bare-Metal Cloud Applications

    Get PDF
    Bare-metal cloud provides a dedicated set of physical machines (PMs) and enables both PMs and virtual machines (VMs) on the PMs to be scaled in/out dynamically. However, to increase efficiency of the resources and reduce violations of service level agreements (SLAs), resources need to be scaled quickly to adapt to workload changes, which results in high reconfiguration overhead, especially for the PMs. This paper proposes a hierarchical and frequency-aware auto-scaling based on Model Predictive Control, which enable us to achieve an optimal balance between resource efficiency and overhead. Moreover, when performing high-frequency resource control, the proposed technique improves the timing of reconfigurations for the PMs without increasing the number of them, while it increases the reallocations for the VMs to adjust the redundant capacity among the applications; this process improves the resource efficiency. Through trace-based numerical simulations, we demonstrate that when the control frequency is increased to 16 times per hour, the VM insufficiency causing SLA violations is reduced to a minimum of 0.1% per application without increasing the VM pool capacity

    Methods and Applications of Synthetic Data Generation

    Get PDF
    The advent of data mining and machine learning has highlighted the value of large and varied sources of data, while increasing the demand for synthetic data captures the structural and statistical characteristics of the original data without revealing personal or proprietary information contained in the original dataset. In this dissertation, we use examples from original research to show that, using appropriate models and input parameters, synthetic data that mimics the characteristics of real data can be generated with sufficient rate and quality to address the volume, structural complexity, and statistical variation requirements of research and development of digital information processing systems. First, we present a progression of research studies using a variety of tools to generate synthetic network traffic patterns, enabling us to observe relationships between network latency and communication pattern benchmarks at all levels of the network stack. We then present a framework for synthesizing large scale IoT data with complex structural characteristics in a scalable extraction and synthesis framework, and demonstrate the use of generated data in the benchmarking of IoT middleware. Finally, we detail research on synthetic image generation for deep learning models using 3D modeling. We find that synthetic images can be an effective technique for augmenting limited sets of real training data, and in use cases that benefit from incremental training or model specialization, we find that pretraining on synthetic images provided a usable base model for transfer learning

    Supercomputing Frontiers

    Get PDF
    This open access book constitutes the refereed proceedings of the 6th Asian Supercomputing Conference, SCFA 2020, which was planned to be held in February 2020, but unfortunately, the physical conference was cancelled due to the COVID-19 pandemic. The 8 full papers presented in this book were carefully reviewed and selected from 22 submissions. They cover a range of topics including file systems, memory hierarchy, HPC cloud platform, container image configuration workflow, large-scale applications, and scheduling

    Evolutionary Neural Network Based Energy Consumption Forecast for Cloud Computing

    Get PDF
    The success of Hadoop, an open-source framework for massively parallel and distributed computing, is expected to drive energy consumption of cloud data centers to new highs as service providers continue to add new infrastructure, services and capabilities to meet the market demands. While current research on data center airflow management, HVAC (Heating, Ventilation and Air Conditioning) system design, workload distribution and optimization, and energy efficient computing hardware and software are all contributing to improved energy efficiency, energy forecast in cloud computing remains a challenge. This paper reports an evolutionary computation based modeling and forecasting approach to this problem. In particular, an evolutionary neural network is developed and structurally optimized to forecast the energy load of a cloud data center. The results, both in terms of forecasting speed and accuracy, suggest that the evolutionary neural network approach to energy consumption forecasting for cloud computing is highly promising
    • …
    corecore