431 research outputs found

    Conservative From-Point Visibility.

    Get PDF
    Visibility determination has been an important part of the computer graphics research for several decades. First studies of the visibility were hidden line removal algorithms, and later hidden surface removal algorithms. Today’s visibility determination is mainly concentrated on conservative, object level visibility determination techniques. Conservative methods are used to accelerate the rendering process when some exact visibility determination algorithm is present. The Z-buffer is a typical exact visibility determination algorithm. The Z-buffer algorithm is implemented in practically every modern graphics chip. This thesis concentrates on a subset of conservative visibility determination techniques. These techniques are sometimes called from-point visibility algorithms. They attempt to estimate a set of visible objects as seen from the current viewpoint. These techniques are typically used with real-time graphics applications such as games and virtual environments. Concentration is on the view frustum culling and occlusion culling. View frustum culling discards objects that are outside of the viewable volume. Occlusion culling algorithms try to identify objects that are not visible because they are behind some other objects. Also spatial data structures behind the efficient implementations of view frustum culling and occlusion culling are reviewed. Spatial data structure techniques like maintaining of dynamic scenes and exploiting spatial and temporal coherences are reviewed.1. Introduction.............................................................................................................1 2. Visibility Problem...................................................................................................3 3. Scene Organization...............................................................................................10 3.1. Bounding Volume Hierarchies and Scene Graphs.................................10 3.2. Spatial Data Structures ...............................................................................13 3.3. Regular Grids...............................................................................................14 3.4. Quadtrees and Octrees ...............................................................................15 3.5. KD-Trees.......................................................................................................20 3.6. BSP-Trees......................................................................................................23 3.7. Exploiting Spatial and Temporal Coherence ..........................................27 3.8. Dynamic Scenes...........................................................................................30 3.9. Summary ......................................................................................................34 4. View Frustum Culling .........................................................................................35 4.1. View Frustum Construction ......................................................................36 4.2. View Frustum Test......................................................................................37 4.3. Hierarchical View Frustum Culling .........................................................41 4.4. Optimizations ..............................................................................................42 4.5. Summary ......................................................................................................44 5. Occlusion Culling .................................................................................................45 5.1. Fundamental Concepts...............................................................................45 5.2. Occluder Selection.......................................................................................46 5.3. Hardware Occlusion Queries....................................................................49 5.4. Object-Space Methods ................................................................................50 5.5. Image-Space Methods ................................................................................55 5.6. Summary ......................................................................................................64 6. Conclusion.............................................................................................................66 References .................................................................................................................... 7

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Tighter bounding volumes for better occlusion culling performance

    Get PDF
    Bounding volumes are used in computer graphics to approximate the actual geometric shape of an object in a scene. The main intention is to reduce the costs associated with visibility or interference tests. The bounding volumes most commonly used have been axis-aligned bounding boxes and bounding spheres. In this paper, we propose the use of discrete orientation polytopes (\kdops) as bounding volumes for the specific use of visibility culling. Occlusion tests are computed more accurately using \kdops, but most importantly, they are also computed more efficiently. We illustrate this point through a series of experiments using a wide range of data models under varying viewing conditions. Although no bounding volume works the best in every situation, {\kdops} are often the best, and also work very well in those cases where they are not the best, therefore they provide good results without having to analyze applications and different bounding volumes

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Efficient algorithms for occlusion culling and shadows

    Get PDF
    The goal of this research is to develop more efficient techniques for computing the visibility and shadows in real-time rendering of three-dimensional scenes. Visibility algorithms determine what is visible from a camera, whereas shadow algorithms solve the same problem from the viewpoint of a light source. In rendering, a lot of computational resources are often spent on primitives that are not visible in the final image. One visibility algorithm for reducing the overhead is occlusion culling, which quickly discards the objects or primitives that are obstructed from the view by other primitives. A new method is presented for performing occlusion culling using silhouettes of meshes instead of triangles. Additionally, modifications are suggested to occlusion queries in order to reduce their computational overhead. The performance of currently available graphics hardware depends on the ordering of input primitives. A new technique, called delay streams, is proposed as a generic solution to order-dependent problems. The technique significantly reduces the pixel processing requirements by improving the efficiency of occlusion culling inside graphics hardware. Additionally, the memory requirements of order-independent transparency algorithms are reduced. A shadow map is a discretized representation of the scene geometry as seen by a light source. Typically the discretization causes difficult aliasing issues, such as jagged shadow boundaries and incorrect self-shadowing. A novel solution is presented for suppressing all types of aliasing artifacts by providing the correct sampling points for shadow maps, thus fully abandoning the previously used regular structures. Also, a simple technique is introduced for limiting the shadow map lookups to the pixels that get projected inside the shadow map. The fillrate problem of hardware-accelerated shadow volumes is greatly reduced with a new hierarchical rendering technique. The algorithm performs per-pixel shadow computations only at visible shadow boundaries, and uses lower resolution shadows for the parts of the screen that are guaranteed to be either fully lit or fully in shadow. The proposed techniques are expected to improve the rendering performance in most real-time applications that use 3D graphics, especially in computer games. More efficient algorithms for occlusion culling and shadows are important steps towards larger, more realistic virtual environments.reviewe

    Integrating Occlusion Culling and Hardware Instancing for Efficient Real-Time Rendering of Building Information Models

    Get PDF
    This paper presents an efficient approach for integrating occlusion culling and hardware instancing. The work is primarily targeted at Building Information Models (BIM), which typically share characteristics addressed by these two acceleration techniques separately – high level of occlusion and frequent reuse of building components. Together, these two acceleration techniques complement each other and allows large and complex BIMs to be rendered in real-time. Specifically, the proposed method takes advantage of temporal coherence and uses a lightweight data transfer strategy to provide an efficient hardware instancing implementation. Compared to only using occlusion culling, additional speedups of 1.25x-1.7x is achieved for rendering large BIMs received from real-world projects. These speedups are measured in viewpoints that represents the worst case scenarios in terms of rendering performance when only occlusion culling is utilized

    Techniques and algorithms for immersive and interactive visualization of large datasets

    Get PDF
    Advances in computing power have made it possible for scientists to perform atomistic simulations of material systems that range in size, from a few hundred thousand atoms to one billion atoms. An immersive and interactive walkthrough of such datasets is an ideal method for exploring and understanding the complex material processes in these simulations. However rendering such large datasets at interactive frame rates is a major challenge. A scalable visualization platform is developed that is scalable and allows interactive exploration in an immersive, virtual environment. The system uses an octree based data management system that forms the core of the application. This reduces the amount of data sent to the pipeline without a per-atom analysis. Secondary algorithms and techniques such as modified occlusion culling, multiresolution rendering and distributed computing are employed to further speed up the rendering process. The resulting system is highly scalable and is capable of visualizing large molecular systems at interactive frame rates on dual processor SGI Onyx2 with an InfinteReality2 graphics pipeline

    Time and Space Coherent Occlusion Culling for Tileable Extended 3D Worlds

    Get PDF
    International audienceIn order to interactively render large virtual worlds, the amount of 3D geometry passed to the graphics hardware must be kept to a minimum. Typical solutions to this problem include the use of potentially visible sets and occlusion culling, however, these solutions do not scale well, in time nor in memory, with the size of a virtual world. We propose a fast and inexpensive variant of occlusion culling tailored to a simple tiling scheme that improves scalability while maintaining very high performance. Tile visibilities are evaluated with hardwareaccelerated occlusion queries, and in-tile rendering is rapidly computed using BVH instantiation and any visibility method; we use the CHC++ occlusion culling method for its good general performance. Tiles are instantiated only when tested locally for visibility, thus avoiding the need for a preconstructed global structure for the complete world. Our approach can render large-scale, diversified virtual worlds with complex geometry, such as cities or forests, all at high performance and with a modest memory footprint
    • 

    corecore