8,872 research outputs found

    NRPA: Neural Recommendation with Personalized Attention

    Full text link
    Existing review-based recommendation methods usually use the same model to learn the representations of all users/items from reviews posted by users towards items. However, different users have different preference and different items have different characteristics. Thus, the same word or similar reviews may have different informativeness for different users and items. In this paper we propose a neural recommendation approach with personalized attention to learn personalized representations of users and items from reviews. We use a review encoder to learn representations of reviews from words, and a user/item encoder to learn representations of users or items from reviews. We propose a personalized attention model, and apply it to both review and user/item encoders to select different important words and reviews for different users/items. Experiments on five datasets validate our approach can effectively improve the performance of neural recommendation.Comment: 4 pages, 4 figure

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems

    User modeling for exploratory search on the Social Web. Exploiting social bookmarking systems for user model extraction, evaluation and integration

    Get PDF
    Exploratory search is an information seeking strategy that extends be- yond the query-and-response paradigm of traditional Information Retrieval models. Users browse through information to discover novel content and to learn more about the newly discovered things. Social bookmarking systems integrate well with exploratory search, because they allow one to search, browse, and filter social bookmarks. Our contribution is an exploratory tag search engine that merges social bookmarking with exploratory search. For this purpose, we have applied collaborative filtering to recommend tags to users. User models are an im- portant prerequisite for recommender systems. We have produced a method to algorithmically extract user models from folksonomies, and an evaluation method to measure the viability of these user models for exploratory search. According to our evaluation web-scale user modeling, which integrates user models from various services across the Social Web, can improve exploratory search. Within this thesis we also provide a method for user model integra- tion. Our exploratory tag search engine implements the findings of our user model extraction, evaluation, and integration methods. It facilitates ex- ploratory search on social bookmarks from Delicious and Connotea and pub- lishes extracted user models as Linked Data

    Hierarchical Expert Recommendation on Community Question Answering Platforms

    Get PDF
    The community question answering (CQA) platforms, such as Stack Overflow, have become the primary source of answers to most questions in various topics. CQA platforms offer an opportunity for sharing and acquiring knowledge at a low cost, where users, many of whom are experts in a specific topic, can potentially provide high-quality solutions to a given question. Many recommendation methods have been proposed to match questions to potential good answerers. However, most existing methods have focused on modelling the user-question interaction — a user might answer multiple questions and a question might be answered by multiple users — using simple collaborative filtering approaches, overlooking the rich information in the question’s title and body when modelling the users’ expertise. This project fills the research gap by thoroughly examining machine learning and deep learning approaches that can be applied to the expert recommendation problem. It proposes a Hierarchical Expert Recommendation (HER) model, a deep learning recommender system that recommends experts to answer a given question in the CQA platform. Although choosing a deep learning over a machine learning solution for this problem can be justified considering the degree of complexity of the available datasets, we assess performance of each family of methods and evaluate the trade-off between them to pick the perfect fit for our problem. We analyzed various machine learning algorithms to determine their performances in the expert recommendation problem, which narrows down the potential ways for tackling this problem using traditional recommendation methods. Furthermore, we investigate the recommendation models based on matrix factorization to establish the baselines for our proposed model and shed light on the weaknesses and strengths of matrix- based solutions, which shape our final deep learning model. In the last section, we introduce the Hierarchical Expert Recommendation System (HER) that utilizes hierarchical attention-based neural networks to rep- resent the questions better and ultimately model the users’ expertise through user-question interactions. We conducted extensive experiments on a large real-world Stack Overflow dataset and benchmarked HER against the state-of-the-art baselines. The results from our extensive experiments show that HER outperforms the state-of-the-art baselines in recommending experts to answer questions in Stack Overflow

    Asymmetrical Hierarchical Networks with Attentive Interactions for Interpretable Review-Based Recommendation

    Full text link
    Recently, recommender systems have been able to emit substantially improved recommendations by leveraging user-provided reviews. Existing methods typically merge all reviews of a given user or item into a long document, and then process user and item documents in the same manner. In practice, however, these two sets of reviews are notably different: users' reviews reflect a variety of items that they have bought and are hence very heterogeneous in their topics, while an item's reviews pertain only to that single item and are thus topically homogeneous. In this work, we develop a novel neural network model that properly accounts for this important difference by means of asymmetric attentive modules. The user module learns to attend to only those signals that are relevant with respect to the target item, whereas the item module learns to extract the most salient contents with regard to properties of the item. Our multi-hierarchical paradigm accounts for the fact that neither are all reviews equally useful, nor are all sentences within each review equally pertinent. Extensive experimental results on a variety of real datasets demonstrate the effectiveness of our method

    Personalized Category Frequency prediction for Buy It Again recommendations

    Full text link
    Buy It Again (BIA) recommendations are crucial to retailers to help improve user experience and site engagement by suggesting items that customers are likely to buy again based on their own repeat purchasing patterns. Most existing BIA studies analyze guests personalized behavior at item granularity. A category-based model may be more appropriate in such scenarios. We propose a recommendation system called a hierarchical PCIC model that consists of a personalized category model (PC model) and a personalized item model within categories (IC model). PC model generates a personalized list of categories that customers are likely to purchase again. IC model ranks items within categories that guests are likely to consume within a category. The hierarchical PCIC model captures the general consumption rate of products using survival models. Trends in consumption are captured using time series models. Features derived from these models are used in training a category-grained neural network. We compare PCIC to twelve existing baselines on four standard open datasets. PCIC improves NDCG up to 16 percent while improving recall by around 2 percent. We were able to scale and train (over 8 hours) PCIC on a large dataset of 100M guests and 3M items where repeat categories of a guest out number repeat items. PCIC was deployed and AB tested on the site of a major retailer, leading to significant gains in guest engagement.Comment: This work appears as a short paper in RecSys 202

    Computational Technologies for Fashion Recommendation: A Survey

    Full text link
    Fashion recommendation is a key research field in computational fashion research and has attracted considerable interest in the computer vision, multimedia, and information retrieval communities in recent years. Due to the great demand for applications, various fashion recommendation tasks, such as personalized fashion product recommendation, complementary (mix-and-match) recommendation, and outfit recommendation, have been posed and explored in the literature. The continuing research attention and advances impel us to look back and in-depth into the field for a better understanding. In this paper, we comprehensively review recent research efforts on fashion recommendation from a technological perspective. We first introduce fashion recommendation at a macro level and analyse its characteristics and differences with general recommendation tasks. We then clearly categorize different fashion recommendation efforts into several sub-tasks and focus on each sub-task in terms of its problem formulation, research focus, state-of-the-art methods, and limitations. We also summarize the datasets proposed in the literature for use in fashion recommendation studies to give readers a brief illustration. Finally, we discuss several promising directions for future research in this field. Overall, this survey systematically reviews the development of fashion recommendation research. It also discusses the current limitations and gaps between academic research and the real needs of the fashion industry. In the process, we offer a deep insight into how the fashion industry could benefit from fashion recommendation technologies. the computational technologies of fashion recommendation

    Formalizing Multimedia Recommendation through Multimodal Deep Learning

    Full text link
    Recommender systems (RSs) offer personalized navigation experiences on online platforms, but recommendation remains a challenging task, particularly in specific scenarios and domains. Multimodality can help tap into richer information sources and construct more refined user/item profiles for recommendations. However, existing literature lacks a shared and universal schema for modeling and solving the recommendation problem through the lens of multimodality. This work aims to formalize a general multimodal schema for multimedia recommendation. It provides a comprehensive literature review of multimodal approaches for multimedia recommendation from the last eight years, outlines the theoretical foundations of a multimodal pipeline, and demonstrates its rationale by applying it to selected state-of-the-art approaches. The work also conducts a benchmarking analysis of recent algorithms for multimedia recommendation within Elliot, a rigorous framework for evaluating recommender systems. The main aim is to provide guidelines for designing and implementing the next generation of multimodal approaches in multimedia recommendation
    corecore