8,212 research outputs found

    Neural Natural Language Processing for Long Texts: A Survey of the State-of-the-Art

    Full text link
    The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded on-line renders automated understanding of long texts a critical area of research. This article has two goals: a) it overviews the relevant neural building blocks, thus serving as a short tutorial, and b) it surveys the state-of-the-art in long document NLP, mainly focusing on two central tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Additionally, this article discusses the main challenges, issues and current solutions related to long document NLP. Finally, the relevant, publicly available, annotated datasets are presented, in order to facilitate further research.Comment: 53 pages, 2 figures, 171 citation

    Attention over pre-trained Sentence Embeddings for Long Document Classification

    Full text link
    Despite being the current de-facto models in most NLP tasks, transformers are often limited to short sequences due to their quadratic attention complexity on the number of tokens. Several attempts to address this issue were studied, either by reducing the cost of the self-attention computation or by modeling smaller sequences and combining them through a recurrence mechanism or using a new transformer model. In this paper, we suggest to take advantage of pre-trained sentence transformers to start from semantically meaningful embeddings of the individual sentences, and then combine them through a small attention layer that scales linearly with the document length. We report the results obtained by this simple architecture on three standard document classification datasets. When compared with the current state-of-the-art models using standard fine-tuning, the studied method obtains competitive results (even if there is no clear best model in this configuration). We also showcase that the studied architecture obtains better results when freezing the underlying transformers. A configuration that is useful when we need to avoid complete fine-tuning (e.g. when the same frozen transformer is shared by different applications). Finally, two additional experiments are provided to further evaluate the relevancy of the studied architecture over simpler baselines

    Evaluating neural multi-field document representations for patent classification

    Get PDF
    Patent classification constitutes a long-tailed hierarchical learning problem. Prior work has demonstrated the efficacy of neural representations based on pre-trained transformers, however, due to the limited input size of these models, using only title and abstract of patents as input. Patent documents consist of several textual fields, some of which are quite long. We show that a baseline using simple tf.idf-based methods can easily leverage this additional information. We propose a new architecture combining the neural transformer-based representations of the various fields into a meta-embedding, which we demonstrate to outperform the tf.idf-based counterparts especially on less frequent classes. Using a relatively simple architecture, we outperform the previous state of the art on CPC classification by a margin of 1.2 macro-avg. F1 and 2.6 micro-avg. F1. We identify the textual field giving a “brief-summary” of the patent as most informative with regard to CPC classification, which points to interesting future directions of research on less computation-intensive models, e.g., by summarizing long documents before neural classification
    corecore