5,608 research outputs found

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-dโ€™Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ธด๊ธ‰ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ฒฝ๋กœ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์ตœ์˜ˆ๋ฆผ.The emergency lane change is a risk itself because it is made instantaneously in emergency such as a sudden stop of the vehicle in front in the driving lane. Therefore, the optimization of the lane change trajectory is an essential research area of autonomous vehicle. This research proposes a path optimization for emergency lane change of autonomous vehicles based on deep reinforcement learning. This algorithm is developed with a focus on fast and safe avoidance behavior and lane change in an emergency. As the first step of algorithm development, a simulation environment was established. IPG CARMAKER was selected for reliable vehicle dynamics simulation and construction of driving scenarios for reinforcement learning. This program is a highly reliable and can analyze the behavior of a vehicle similar to that of a real vehicle. In this research, a simulation was performed using the Hyundai I30-PDe full car model. And as a simulator for DRL and vehicle control, Matlab Simulink which can encompass all of control, measurement, and artificial intelligence was selected. By connecting two simulators, the emergency lane change trajectory is optimized based on DRL. The vehicle lane change trajectory is modeled as a 3rd order polynomial. The start and end point of the lane change is set and analyzed as a function of the lane change distance for the coefficient of the polynomial. In order to optimize the coefficients. A DRL architecture is constructed. 12 types of driving environment data are used for the observation space. And lane change distance which is a variable of polynomial is selected as the output of action space. Reward space is designed to maximize the learning ability. Dynamic & static reward and penalty are given at each time step of simulation, so that optimization proceeds in a direction in which the accumulated rewards could be maximized. Deep Deterministic Policy Gradient agent is used as an algorithm for optimization. An algorithm is developed for driving a vehicle in a dynamic simulation program. First, an algorithm is developed that can determine when, at what velocity, and in which direction to change the lane of a vehicle in an emergency situation. By estimating the maximum tire-road friction coefficient in real-time, the minimum distance for the driving vehicle to stop is calculated to determine the risk of longitudinal collision with the vehicle in front. Also, using Gippsโ€™ safety distance formula, an algorithm is developed that detects the possibility of a collision with a vehicle coming from the lane to be changed, and determines whether to overtake the vehicle to pass forward or to go backward after as being overtaken. Based on this, the decision-making algorithm for the final lane change is developed by determine the collision risk and safety of the left and right lanes. With the developed algorithm that outputs the emergency lane change trajectory through the configured reinforcement learning structure and the general driving trajectory such as the lane keeping algorithm and the adaptive cruise control algorithm according to the situation, an integrated algorithm that drives the ego vehicle through the adaptive model predictive controller is developed. As the last step of the research, DRL was performed to optimize the developed emergency lane change path optimization algorithm. 60,000 trial-and-error learning is performed to develop the algorithm for each driving situation, and performance is evaluated through test driving.๊ธด๊ธ‰ ์ฐจ์„  ๋ณ€๊ฒฝ์€ ์ฃผํ–‰ ์ฐจ์„ ์—์„œ ์„ ํ–‰์ฐจ๋Ÿ‰ ๊ธ‰์ •๊ฑฐ์™€ ๊ฐ™์€ ์‘๊ธ‰์ƒํ™ฉ ๋ฐœ์ƒ์‹œ์— ์ˆœ๊ฐ„์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์ด๋ฏ€๋กœ ๊ทธ ์ž์ฒด์— ์œ„ํ—˜์„ฑ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. ์ง€๋‚˜์น˜๊ฒŒ ๋Š๋ฆฌ๊ฒŒ ์กฐํ–ฅ์„ ํ•˜๋Š” ๊ฒฝ์šฐ, ์ฃผํ–‰ ์ฐจ๋Ÿ‰์€ ์•ž์— ์žˆ๋Š” ์žฅ์• ๋ฌผ๊ณผ์˜ ์ถฉ๋Œ์„ ํ”ผํ•  ์ˆ˜ ์—†๋‹ค. ์ด์™€ ๋ฐ˜๋Œ€๋กœ ์ง€๋‚˜์น˜๊ฒŒ ๋น ๋ฅด๊ฒŒ ์กฐํ–ฅ์„ ํ•˜๋Š” ๊ฒฝ์šฐ, ์ฐจ๋Ÿ‰๊ณผ ์ง€๋ฉด ์‚ฌ์ด์˜ ์ž‘์šฉ๋ ฅ์€ ํƒ€์ด์–ด ๋งˆ์ฐฐ ํ•œ๊ณ„๋ฅผ ๋„˜๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ์ฐจ๋Ÿ‰์˜ ์กฐ์ข… ์•ˆ์ •์„ฑ์„ ๋–จ์–ดํŠธ๋ ค ์Šคํ•€์ด๋‚˜ ์ „๋ณต ๋“ฑ ๋‹ค๋ฅธ ์–‘์ƒ์˜ ์‚ฌ๊ณ ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ฒฝ๋กœ์˜ ์ตœ์ ํ™”๋Š” ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‘๊ธ‰ ์ƒํ™ฉ ๋Œ€์ฒ˜์— ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ธด๊ธ‰ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ฒฝ๋กœ๋ฅผ ์ตœ์ ํ™”ํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์„ ํ–‰์ฐจ๋Ÿ‰์˜ ๊ธ‰์ •๊ฑฐ๋‚˜ ์žฅ์• ๋ฌผ ์ถœํ˜„๊ณผ ๊ฐ™์€ ์‘๊ธ‰์ƒํ™ฉ ๋ฐœ์ƒ ์‹œ, ๋น ๋ฅด๊ณ  ์•ˆ์ „ํ•œ ํšŒํ”ผ ๊ฑฐ๋™ ๋ฐ ์ฐจ์„  ๋ณ€๊ฒฝ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ์˜ ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋กœ์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์ด ๊ตฌ์ถ•๋˜์—ˆ๋‹ค. ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์ฐจ๋Ÿ‰ ๋™์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ๊ฐ•ํ™”ํ•™์Šต์„ ์œ„ํ•œ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค ๊ตฌ์ถ•์„ ์œ„ํ•˜์—ฌ IPG CARMAKER๊ฐ€ ์„ ์ •๋˜์—ˆ๋‹ค. ์ด ํ”„๋กœ๊ทธ๋žจ์€ ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋†’์€ ์‹ ๋ขฐ์„ฑ์„ ๊ฐ€์ง„ ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์‹ค์ œ ์ฐจ๋Ÿ‰๊ณผ ์œ ์‚ฌํ•œ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ˜„๋Œ€์ž๋™์ฐจ์˜ I30-PDe ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฐ•ํ™”ํ•™์Šต๊ณผ ์ฐจ๋Ÿ‰์ œ์–ด๋ฅผ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์ œ์–ด, ๊ณ„์ธก, ์ธ๊ณต์ง€๋Šฅ์„ ๋ชจ๋‘ ์•„์šฐ๋ฅผ ์ˆ˜ ์žˆ๋Š” Matlab Simulink๋ฅผ ์„ ์ •ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” IPG CARMAKER์™€ Matlab Simulink๋ฅผ ์—ฐ๋™ํ•˜์—ฌ ์‹ฌ์ธต ๊ฐ•ํ™” ํ•™์Šต์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ธด๊ธ‰ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ถค์ ์„ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ์ฐจ๋Ÿ‰์˜ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ถค์ ์€ 3์ฐจ ๋‹คํ•ญ์‹์˜ ํ˜•์ƒ์œผ๋กœ ๋ชจ๋ธ๋ง ๋˜์—ˆ๋‹ค. ์ฐจ์„  ๋ณ€๊ฒฝ ์‹œ์ž‘ ์ง€์ ๊ณผ ์ข…๋ฃŒ ์ง€์ ์„ ์„ค์ •ํ•˜์—ฌ ๋‹คํ•ญ์‹์˜ ๊ณ„์ˆ˜๋ฅผ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ฑฐ๋ฆฌ์— ๋Œ€ํ•œ ํ•จ์ˆ˜๋กœ ํ•ด์„ํ•˜์˜€๋‹ค. ์‹ฌ์ธต ๊ฐ•ํ™” ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์ˆ˜๋“ค์„ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐ•ํ™” ํ•™์Šต ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ๊ด€์ธก ๊ณต๊ฐ„์€ 12๊ฐ€์ง€์˜ ์ฃผํ–‰ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์˜€๊ณ , ๊ฐ•ํ™” ํ•™์Šต์˜ ์ถœ๋ ฅ์œผ๋กœ๋Š” 3์ฐจ ํ•จ์ˆ˜์˜ ๋ณ€์ˆ˜์ธ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ฑฐ๋ฆฌ๋ฅผ ์„ ์ •ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐ•ํ™” ํ•™์Šต์˜ ํ•™์Šต ๋Šฅ๋ ฅ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ณด์ƒ ๊ณต๊ฐ„์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋™์  ๋ณด์ƒ, ์ •์  ๋ณด์ƒ, ๋™์  ๋ฒŒ์น™, ์ •์  ๋ฒŒ์น™์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๋งค ๋‹จ๊ณ„๋งˆ๋‹ค ๋ถ€์—ฌํ•จ์œผ๋กœ์จ ๋ณด์ƒ ์ด ํ•ฉ์ด ์ตœ๋Œ€ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ•™์Šต์ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ๋Š” Deep Deterministic Policy Gradient agent๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ฐ•ํ™”ํ•™์Šต ์•„ํ‚คํ…์ฒ˜์™€ ํ•จ๊ป˜ ๋™์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋กœ๊ทธ๋žจ์—์„œ์˜ ์ฐจ๋Ÿ‰ ๊ตฌ๋™์„ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ € ์‘๊ธ‰์ƒํ™ฉ์‹œ์— ์ฐจ๋Ÿ‰์˜ ์ฐจ์„ ์„ ์–ธ์ œ, ์–ด๋–ค ์†๋„๋กœ, ์–ด๋–ค ๋ฐฉํ–ฅ์œผ๋กœ ๋ณ€๊ฒฝํ•  ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ์˜์‚ฌ๊ฒฐ์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํƒ€์ด์–ด์™€ ๋„๋กœ ์‚ฌ์ด์˜ ์ตœ๋Œ€ ๋งˆ์ฐฐ๊ณ„์ˆ˜๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ถ”์ •ํ•˜์—ฌ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์ด ์ •์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์†Œ ๊ฑฐ๋ฆฌ๋ฅผ ์‚ฐ์ถœํ•จ์œผ๋กœ์จ ์„ ํ–‰ ์ฐจ๋Ÿ‰๊ณผ์˜ ์ถฉ๋Œ ์œ„ํ—˜์„ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋˜ํ•œ Gipps์˜ ์•ˆ์ „๊ฑฐ๋ฆฌ ๊ณต์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณ€๊ฒฝํ•˜๊ณ ์ž ํ•˜๋Š” ์ฐจ์„ ์—์„œ ์˜ค๋Š” ์ฐจ๋Ÿ‰๊ณผ์˜ ์ถฉ๋Œ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ์ง€ํ•˜์—ฌ ๊ทธ ์ฐจ๋Ÿ‰์„ ์ถ”์›”ํ•ด์„œ ์•ž์œผ๋กœ ์ง€๋‚˜๊ฐˆ์ง€, ์ถ”์›”์„ ๋‹นํ•ด์„œ ๋’ค๋กœ ๊ฐˆ ๊ฒƒ์ธ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ขŒ์ธก ์ฐจ์„ ๊ณผ ์šฐ์ธก ์ฐจ์„ ์˜ ์ถฉ๋Œ ์œ„ํ—˜์„ฑ ๋ฐ ์•ˆ์ •์„ฑ์„ ํŒ๋‹จํ•˜์—ฌ ์ตœ์ข…์ ์ธ ์ฐจ์„  ๋ณ€๊ฒฝ์„ ์œ„ํ•œ ์˜์‚ฌ๊ฒฐ์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ตฌ์„ฑ๋œ ๊ฐ•ํ™” ํ•™์Šต ๊ตฌ์กฐ๋ฅผ ํ†ตํ•œ ๊ธด๊ธ‰ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ถค์ ๊ณผ ์ฐจ์„  ์œ ์ง€ ์žฅ์น˜, ์ ์‘ํ˜• ์ˆœํ•ญ ์ œ์–ด์™€ ๊ฐ™์€ ์ผ๋ฐ˜ ์ฃผํ–‰์‹œ์˜ ๊ถค์ ์„ ์ƒํ™ฉ์— ๋งž์ถ”์–ด ์ถœ๋ ฅํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ ์‘ํ˜• ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด๊ธฐ๋ฅผ ํ†ตํ•ด ์ฃผํ–‰ ์ฐจ๋Ÿ‰์„ ๊ตฌ๋™ํ•˜๋Š” ํ†ตํ•ฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„๋กœ์„œ, ๊ฐœ๋ฐœ๋œ ๊ธด๊ธ‰ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ฒฝ๋กœ ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•˜์—ฌ ์‹ฌ์ธต ๊ฐ•ํ™” ํ•™์Šต์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ด 60,000ํšŒ์˜ ์‹œํ–‰ ์ฐฉ์˜ค ๋ฐฉ์‹์˜ ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ ์ฃผํ–‰ ์ƒํ™ฉ ๋ณ„ ์ตœ์ ์˜ ์ฐจ์„  ๋ณ€๊ฒฝ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ๊ฐ ์ฃผํ–‰์ƒํ™ฉ ๋ณ„ ์ตœ์ ์˜ ์ฐจ์„  ๋ณ€๊ฒฝ ๊ถค์ ์„ ์ œ์‹œํ•˜์˜€๋‹ค.Chapter 1. Introduction 1 1.1. Research Background 1 1.2. Previous Research 5 1.3. Research Objective 9 1.4. Dissertation Overview 13 Chapter 2. Simulation Environment 19 2.1. Simulator 19 2.2. Scenario 26 Chapter 3. Methodology 28 3.1. Reinforcement learning 28 3.2. Deep reinforcement learning 30 3.3. Neural network 33 Chapter 4. DRL-enhanced Lane Change 36 4.1. Necessity of Evasive Steering Trajectory Optimization 36 4.2. Trajectory Planning 39 4.3. DRL Structure 42 4.3.1. Observation 43 4.3.2. Action 47 4.3.3. Reward 49 4.3.4. Neural Network Architecture 58 4.3.5. Deep Deterministic Policy Gradient (DDPG) Agent 60 Chapter 5. Autonomous Driving Algorithm Integration 64 5.1. Lane Change Decision Making 65 5.1.1. Longitudinal Collision Detection 66 5.1.2. Lateral Collision Detection 71 5.1.3. Lane Change Direction Decision 74 5.2. Path Planning 75 5.3. Vehicle Controller 76 5.4. Algorithm Integration 77 Chapter 6. Training & Results 79 Chapter 7. Conclusion 91 References 97 ๊ตญ๋ฌธ์ดˆ๋ก 104๋ฐ•
    • โ€ฆ
    corecore