1,810 research outputs found

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version

    In-operation planning in flexgrid optical core networks

    Get PDF
    New generation applications, such as cloud computing or video distribution, can run in a telecom cloud infrastructure where the datacenters (DCs) of telecom operators are integrated in their networks thus, increasing connections' dynamicity and resulting in time-varying traffic capacities, which might also entail changes in the traffic direction along the day. As a result, a flexible optical technology able to dynamically set-up variable-capacity connections, such as flexgrid, is needed. Nonetheless, network dynamicity might entail network performance degradation thus, requiring re-optimizing the network while it is in operation. This thesis is devoted to devise new algorithms to solve in-operation network planning problems aiming at enhancing the performance of optical networks and at studying their feasibility in experimental environments. In-operation network planning requires from an architecture enabling the deployment of algorithms that must be solved in stringent times. That architecture can be based on a Path Computation Element (PCE) or a Software Defined Networks controller. In this thesis, we assume the former split in a front-end PCE, in charge of provisioning paths and handling network events, and a specialized planning tool in the form of a back-end PCE responsible for solving in-operation planning problems. After the architecture to support in-operation planning is assessed, we focus on studying the following applications: 1) Spectrum fragmentation is one of the most important problems in optical networks. To alleviate it to some extent without traffic disruption, we propose a hitless spectrum defragmentation strategy. 2) Each connection affected by a failure can be recovered using multiple paths to increase traffic restorability at the cost of poor resource utilization. We propose re-optimizing the network after repairing the failure to aggregate and reroute those connections to release spectral resources. 3) We study two approaches to provide multicast services: establishing a point-to-multipoint connections at the optical layer and using multi-purpose virtual network topologies (VNT) to serve both unicast and multicast connectivity requests. 4) The telecom cloud infrastructure, enables placing contents closer to the users. Based on it, we propose a hierarchical content distribution architecture where VNTs permanently interconnect core DCs and metro DCs periodically synchronize contents to the core DCs. 5) When the capacity of the optical backbone network becomes exhausted, we propose using a planning tool with access to inventory and operation databases to periodically decide the equipment and connectivity to be installed at the minimum cost reducing capacity overprovisioning. 6) In multi-domain multi-operator scenarios, a broker on top of the optical domains can provision multi-domain connections. We propose performing intra-domain spectrum defragmentation when no contiguous spectrum can be found for a new connection request. 7) Packet nodes belonging to a VNT can collect and send incoming traffic monitoring data to a big data repository. We propose using the collected data to predict next period traffic and to adapt the VNT to future conditions. The methodology followed in this thesis consists in proposing a problem statement and/or a mathematical formulation for the problems identified and then, devising algorithms for solving them. Those algorithms are simulated and then, they are experimentally assessed in real test-beds. This thesis demonstrates the feasibility of performing in-operation planning in optical networks, shows that it enhances the performance of the network and validates the feasibility of its deployment in real networks. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several research projects, namely IDEALIST (FP7-ICT-2011-8) and GEANT (238875) funded by the EC and SYNERGY (TEC2014-59995-R) funded by the MINECO.Les aplicacions de nova generació, com ara el cloud computing o la distribució de vídeo, es poden executar a infraestructures de telecom cloud (TCI) on operadors integren els seus datacenters (DC) a les seves xarxes. Aquestes aplicacions fan que incrementi tant la dinamicitat de les connexions, com la variabilitat de les seves capacitats en el temps, arribant a canviar de direcció al llarg del dia. Llavors, cal disposar de tecnologies òptiques flexibles, tals com flexgrid, que suportin aquesta dinamicitat a les connexions. Aquesta dinamicitat pot degradar el rendiment de la xarxa, obligant a re-optimitzar-la mentre és en operació. Aquesta tesis està dedicada a idear nous algorismes per a resoldre problemes de planificació sobre xarxes en operació (in-operation network planning) per millorar el rendiment de les xarxes òptiques i a estudiar la seva factibilitat en entorns experimentals. Aquests problemes requereixen d’una arquitectura que permeti desplegar algorismes que donin solucions en temps restrictius. L’arquitectura pot estar basada en un Element de Computació de Rutes (PCE) o en un controlador de Xarxes Definides per Software. En aquesta tesis, assumim un PCE principal encarregat d’aprovisionar rutes i gestionar esdeveniments de la xarxa, i una eina de planificació especialitzada en forma de PCE de suport per resoldre problemes d’in-operation planning. Un cop validada l’arquitectura que dona suport a in-operation planning, estudiarem les següents aplicacions: 1) La fragmentació d’espectre és un dels principals problemes a les xarxes òptiques. Proposem reduir-la en certa mesura, fent servir una estratègia que no afecta al tràfic durant la desfragmentació. 2) Cada connexió afectada per una fallada pot ser recuperada fent servir múltiples rutes incrementant la restaurabilitat de la xarxa, tot i empitjorar-ne la utilització de recursos. Proposem re-optimitzar la xarxa després de reparar una fallada per agregar i re-enrutar aquestes connexions tractant d’alliberar recursos espectrals. 3) Estudiem dues solucions per aprovisionar serveis multicast: establir connexions punt-a-multipunt sobre la xarxa òptica i utilitzar Virtual Network Topologies (VNT) multi-propòsit per a servir peticions de connectivitat tant unicast com multicast. 4) La TCI permet mantenir els continguts a prop dels usuaris. Proposem una arquitectura jeràrquica de distribució de continguts basada en la TCI, on els DC principals s’interconnecten per mitjà de VNTs permanents i els DCs metropolitans periòdicament sincronitzen continguts amb els principals. 5) Quan la capacitat de la xarxa òptica s’exhaureix, proposem utilitzar una eina de planificació amb accés a bases de dades d’inventari i operacionals per decidir periòdicament l’equipament i connectivitats a instal·lar al mínim cost i reduir el sobre-aprovisionament de capacitat. 6) En entorns multi-domini multi-operador, un broker per sobre dels dominis òptics pot aprovisionar connexions multi-domini. Proposem aplicar desfragmentació d’espectre intra-domini quan no es pot trobar espectre contigu per a noves peticions de connexió. 7) Els nodes d’una VNT poden recollir i enviar informació de monitorització de tràfic entrant a un repositori de big data. Proposem utilitzar aquesta informació per adaptar la VNT per a futures condicions. La metodologia que hem seguit en aquesta tesis consisteix en formalitzar matemàticament els problemes un cop aquests son identificats i, després, idear algorismes per a resoldre’ls. Aquests algorismes son simulats i finalment validats experimentalment en entorns reals. Aquesta tesis demostra la factibilitat d’implementar mecanismes d’in-operation planning en xarxes òptiques, mostra els beneficis que aquests aporten i valida la seva aplicabilitat en xarxes reals. Part del treball presentat en aquesta tesis ha estat dut a terme en el marc dels projectes de recerca IDEALIST (FP7-ICT-2011-8) i GEANT (238875), finançats per la CE, i SYNERGY (TEC2014-59995-R), finançat per el MINECO.Postprint (published version

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures

    Get PDF
    To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance. The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric

    Spatial-spectral flexible optical networking:enabling switching solutions for a simplified and efficient SDM network platform

    Get PDF
    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution

    Getting routers out of the core: Building an optical wide area network with "multipaths"

    Full text link
    We propose an all-optical networking solution for a wide area network (WAN) based on the notion of multipoint-to-multipoint lightpaths that, for short, we call "multipaths". A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted MAC protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like OPS and OBS. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based ISP network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay

    Optical fibre local area networks

    Get PDF
    corecore