758 research outputs found

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Database Workload Management (Dagstuhl Seminar 12282)

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 12282 "Database Workload Management". Dagstuhl Seminar 12282 was designed to provide a venue where researchers can engage in dialogue with industrial participants for an in-depth exploration of challenging industrial workloads, where industrial participants can challenge researchers to apply the lessons-learned from their large-scale experiments to multiple real systems, and that would facilitate the release of real workloads that can be used to drive future research, and concrete measures to evaluate and compare workload management techniques in the context of these workloads

    DCDB Wintermute: Enabling Online and Holistic Operational Data Analytics on HPC Systems

    Full text link
    As we approach the exascale era, the size and complexity of HPC systems continues to increase, raising concerns about their manageability and sustainability. For this reason, more and more HPC centers are experimenting with fine-grained monitoring coupled with Operational Data Analytics (ODA) to optimize efficiency and effectiveness of system operations. However, while monitoring is a common reality in HPC, there is no well-stated and comprehensive list of requirements, nor matching frameworks, to support holistic and online ODA. This leads to insular ad-hoc solutions, each addressing only specific aspects of the problem. In this paper we propose Wintermute, a novel generic framework to enable online ODA on large-scale HPC installations. Its design is based on the results of a literature survey of common operational requirements. We implement Wintermute on top of the holistic DCDB monitoring system, offering a large variety of configuration options to accommodate the varying requirements of ODA applications. Moreover, Wintermute is based on a set of logical abstractions to ease the configuration of models at a large scale and maximize code re-use. We highlight Wintermute's flexibility through a series of practical case studies, each targeting a different aspect of the management of HPC systems, and then demonstrate the small resource footprint of our implementation.Comment: Accepted for publication at the 29th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020

    Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

    Full text link
    Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Accelerating their training is a major challenge and techniques range from distributed algorithms to low-level circuit design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for its parallelization. We present trends in DNN architectures and the resulting implications on parallelization strategies. We then review and model the different types of concurrency in DNNs: from the single operator, through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous stochastic optimization, distributed system architectures, communication schemes, and neural architecture search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning

    Parallel Processes in HPX: Designing an Infrastructure for Adaptive Resource Management

    Get PDF
    Advancement in cutting edge technologies have enabled better energy efficiency as well as scaling computational power for the latest High Performance Computing(HPC) systems. However, complexity, due to hybrid architectures as well as emerging classes of applications, have shown poor computational scalability using conventional execution models. Thus alternative means of computation, that addresses the bottlenecks in computation, is warranted. More precisely, dynamic adaptive resource management feature, both from systems as well as application\u27s perspective, is essential for better computational scalability and efficiency. This research presents and expands the notion of Parallel Processes as a placeholder for procedure definitions, targeted at one or more synchronous domains, meta data for computation and resource management as well as infrastructure for dynamic policy deployment. In addition to this, the research presents additional guidelines for a framework for resource management in HPX runtime system. Further, this research also lists design principles for scalability of Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also, to verify the usefulness of Parallel Processes, a preliminary performance evaluation of different task scheduling policies is carried out using two different applications. The applications used are: Unbalanced Tree Search, a reference dynamic graph application, implemented by this research in HPX and MiniGhost, a reference stencil based application using bulk synchronous parallel model. The results show that different scheduling policies provide better performance for different classes of applications; and for the same application class, in certain instances, one policy fared better than the others, while vice versa in other instances, hence supporting the hypothesis of the need of dynamic adaptive resource management infrastructure, for deploying different policies and task granularities, for scalable distributed computing

    An optimization framework for the capacity allocation and admission control of MapReduce jobs in cloud systems

    Get PDF
    Nowadays, we live in a Big Data world and many sectors of our economy are guided by data-driven decision processes. Big Data and Business Intelligence applications are facilitated by the MapReduce programming model, while, at infrastructural layer, cloud computing provides flexible and cost-effective solutions to provide on-demand large clusters. Capacity allocation in such systems, meant as the problem of providing computational power to support concurrent MapReduce applications in a cost-effective fashion, represents a challenge of paramount importance. In this paper we lay the foundation for a solution implementing admission control and capacity allocation for MapReduce jobs with a priori deadline guarantees. In particular, shared Hadoop 2.x clusters supporting batch and/or interactive jobs are targeted. We formulate a linear programming model able to minimize cloud resources costs and rejection penalties for the execution of jobs belonging to multiple classes with deadline guarantees. Scalability analyses demonstrated that the proposed method is able to determine the global optimal solution of the linear problem for systems including up to 10,000 classes in less than 1 s

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world
    • …
    corecore