104 research outputs found

    Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation

    Full text link
    We propose an approach to discover class-specific pixels for the weakly-supervised semantic segmentation task. We show that properly combining saliency and attention maps allows us to obtain reliable cues capable of significantly boosting the performance. First, we propose a simple yet powerful hierarchical approach to discover the class-agnostic salient regions, obtained using a salient object detector, which otherwise would be ignored. Second, we use fully convolutional attention maps to reliably localize the class-specific regions in a given image. We combine these two cues to discover class-specific pixels which are then used as an approximate ground truth for training a CNN. While solving the weakly supervised semantic segmentation task, we ensure that the image-level classification task is also solved in order to enforce the CNN to assign at least one pixel to each object present in the image. Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of 60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared to the published state-of-the-art results. The code is made publicly available

    BASS: boundary-aware superpixel segmentation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We propose a new superpixel algorithm based on exploiting the boundary information of an image, as objects in images can generally be described by their boundaries. Our proposed approach initially estimates the boundaries and uses them to place superpixel seeds in the areas in which they are more dense. Afterwards, we minimize an energy function in order to expand the seeds into full superpixels. In addition to standard terms such as color consistency and compactness, we propose using the geodesic distance which concentrates small superpixels in regions of the image with more information, while letting larger superpixels cover more homogeneous regions. By both improving the initialization using the boundaries and coherency of the superpixels with geodesic distances, we are able to maintain the coherency of the image structure with fewer superpixels than other approaches. We show the resulting algorithm to yield smaller Variation of Information metrics in seven different datasets while maintaining Undersegmentation Error values similar to the state-of-the-art methods.Peer ReviewedPostprint (author's final draft
    • …
    corecore