5,392 research outputs found

    Feature discovery and visualization of robot mission data using convolutional autoencoders and Bayesian nonparametric topic models

    Full text link
    The gap between our ability to collect interesting data and our ability to analyze these data is growing at an unprecedented rate. Recent algorithmic attempts to fill this gap have employed unsupervised tools to discover structure in data. Some of the most successful approaches have used probabilistic models to uncover latent thematic structure in discrete data. Despite the success of these models on textual data, they have not generalized as well to image data, in part because of the spatial and temporal structure that may exist in an image stream. We introduce a novel unsupervised machine learning framework that incorporates the ability of convolutional autoencoders to discover features from images that directly encode spatial information, within a Bayesian nonparametric topic model that discovers meaningful latent patterns within discrete data. By using this hybrid framework, we overcome the fundamental dependency of traditional topic models on rigidly hand-coded data representations, while simultaneously encoding spatial dependency in our topics without adding model complexity. We apply this model to the motivating application of high-level scene understanding and mission summarization for exploratory marine robots. Our experiments on a seafloor dataset collected by a marine robot show that the proposed hybrid framework outperforms current state-of-the-art approaches on the task of unsupervised seafloor terrain characterization.Comment: 8 page

    Down-Sampling coupled to Elastic Kernel Machines for Efficient Recognition of Isolated Gestures

    Get PDF
    In the field of gestural action recognition, many studies have focused on dimensionality reduction along the spatial axis, to reduce both the variability of gestural sequences expressed in the reduced space, and the computational complexity of their processing. It is noticeable that very few of these methods have explicitly addressed the dimensionality reduction along the time axis. This is however a major issue with regard to the use of elastic distances characterized by a quadratic complexity. To partially fill this apparent gap, we present in this paper an approach based on temporal down-sampling associated to elastic kernel machine learning. We experimentally show, on two data sets that are widely referenced in the domain of human gesture recognition, and very different in terms of quality of motion capture, that it is possible to significantly reduce the number of skeleton frames while maintaining a good recognition rate. The method proves to give satisfactory results at a level currently reached by state-of-the-art methods on these data sets. The computational complexity reduction makes this approach eligible for real-time applications.Comment: ICPR 2014, International Conference on Pattern Recognition, Stockholm : Sweden (2014

    Latent Semantic Learning with Structured Sparse Representation for Human Action Recognition

    Full text link
    This paper proposes a novel latent semantic learning method for extracting high-level features (i.e. latent semantics) from a large vocabulary of abundant mid-level features (i.e. visual keywords) with structured sparse representation, which can help to bridge the semantic gap in the challenging task of human action recognition. To discover the manifold structure of midlevel features, we develop a spectral embedding approach to latent semantic learning based on L1-graph, without the need to tune any parameter for graph construction as a key step of manifold learning. More importantly, we construct the L1-graph with structured sparse representation, which can be obtained by structured sparse coding with its structured sparsity ensured by novel L1-norm hypergraph regularization over mid-level features. In the new embedding space, we learn latent semantics automatically from abundant mid-level features through spectral clustering. The learnt latent semantics can be readily used for human action recognition with SVM by defining a histogram intersection kernel. Different from the traditional latent semantic analysis based on topic models, our latent semantic learning method can explore the manifold structure of mid-level features in both L1-graph construction and spectral embedding, which results in compact but discriminative high-level features. The experimental results on the commonly used KTH action dataset and unconstrained YouTube action dataset show the superior performance of our method.Comment: The short version of this paper appears in ICCV 201

    Multi-hierarchical Convolutional Network for Efficient Remote Photoplethysmograph Signal and Heart Rate Estimation from Face Video Clips

    Full text link
    Heart beat rhythm and heart rate (HR) are important physiological parameters of the human body. This study presents an efficient multi-hierarchical spatio-temporal convolutional network that can quickly estimate remote physiological (rPPG) signal and HR from face video clips. First, the facial color distribution characteristics are extracted using a low-level face feature Generation (LFFG) module. Then, the three-dimensional (3D) spatio-temporal stack convolution module (STSC) and multi-hierarchical feature fusion module (MHFF) are used to strengthen the spatio-temporal correlation of multi-channel features. In the MHFF, sparse optical flow is used to capture the tiny motion information of faces between frames and generate a self-adaptive region of interest (ROI) skin mask. Finally, the signal prediction module (SP) is used to extract the estimated rPPG signal. The experimental results on the three datasets show that the proposed network outperforms the state-of-the-art methods.Comment: 33 pages,9 figure

    A Survey on Human Activity Analysis Techniques

    Get PDF
    Human Activity Recognition(HAR) is Popular research topic in Computer vision and Image Processing area. This Paper Provide an exhaustive survey on the Entire Process of identify or Recognize Human activity. Basically, There are Four steps are involved in HAR process, which are Pre-processing, Feature extraction, Training, and Classification of different activities from video. The need of data preprocessing , and segmentation based on camera movements are presented. This paper provide detailed survey on different features for HAR, feature extraction and selection method , and Classification methods with advantages and disadvantages. Finally, A brief discussion about various classification techniques are presented
    • …
    corecore