9,128 research outputs found

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Dynamic hybrid simulation of batch processes driven by a scheduling module

    Get PDF
    Simulation is now a CAPE tool widely used by practicing engineers for process design and control. In particular, it allows various offline analyses to improve system performance such as productivity, energy efficiency, waste reduction, etc. In this framework, we have developed the dynamic hybrid simulation environment PrODHyS whose particularity is to provide general and reusable object-oriented components dedicated to the modeling of devices and operations found in chemical processes. Unlike continuous processes, the dynamic simulation of batch processes requires the execution of control recipes to achieve a set of production orders. For these reasons, PrODHyS is coupled to a scheduling module (ProSched) based on a MILP mathematical model in order to initialize various operational parameters and to ensure a proper completion of the simulation. This paper focuses on the procedure used to generate the simulation model corresponding to the realization of a scenario described through a particular scheduling

    Towards the Holy Grail: combining system dynamics and discrete-event simulation in healthcare

    No full text
    The idea of combining discrete-event simulation and system dynamics has been a topic of debate in theoperations research community for over a decade. Many authors have considered the potential benefits ofsuch an approach from a methodological or practical standpoint. However, despite numerous examples ofmodels with both discrete and continuous parameters in the computer science and engineering literature,nobody in the OR field has yet succeeded in developing a genuinely hybrid approach which truly integratesthe philosophical approach and technical merits of both DES and SD in a single model. In this paperwe consider some of the reasons for this and describe two practical healthcare examples of combinedDES/SD models, which nevertheless fall short of the “holy grail” which has been so widely discussed inthe literature over the past decade

    SFC++: A tool for developing distributed real time control

    Get PDF
    WESIC'98, Girona, Spain June 10, 11 and 12, 1998This paper describes a visual tool for developing real time software for the control of distributed manufacturing systems. The aim of this project, currently in progress, is to get a visual programming environment which integrates both the advantages of object oriented modelling for the design and simulation of systems and the power of modern distributed control systems (i.e. computers with real time operating systems interconnected by means of industrial real time networks). To bridge the gap between the object oriented system model and the implementation level, at which we have multiple parallel tasks running over a network, Sequential Function Charts are used as a standard formalism (IEC, 1988; UTE, 1992) for the description of system dynamics and control software programmin
    corecore