41 research outputs found

    Multigrain Affinity for Heterogeneous Work Stealing

    Get PDF
    International audienceIn a parallel computing context, peak performance is hard to reach with irregular applications such as sparse linear algebra operations. It requires dynamic adjustments to automatically balance the workload between several processors. The problem becomes even more complicated when an architecture contains processing units with radically different computing capabilities. We present a hierarchical scheduling scheme designed to harness several CPUs and a GPU. It is built on a two-level work stealing mechanism tightly coupled to a software-managed cache. We show that our approach is well suited to dynamically control heterogeneous architectures, while taking advantage of a reduction of data transfers

    Studies on automatic parallelization for heterogeneous and homogeneous multicore processors

    Get PDF
    制度:新 ; 報告番号:甲3537号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587

    Studies on parallelism improvement and power reduction in multigrain automatic parallelizing compiler

    Get PDF
    制度:新 ; 文部省報告番号:甲2421号 ; 学位の種類:博士(工学) ; 授与年月日:2007/3/15 ; 早大学位記番号:新450

    Multigrain Affinity for Heterogeneous Work Stealing

    Get PDF
    International audienceIn a parallel computing context, peak performance is hard to reach with irregular applications such as sparse linear algebra operations. It requires dynamic adjustments to automatically balance the workload between several processors. The problem becomes even more complicated when an architecture contains processing units with radically different computing capabilities. We present a hierarchical scheduling scheme designed to harness several CPUs and a GPU. It is built on a two-level work stealing mechanism tightly coupled to a software-managed cache. We show that our approach is well suited to dynamically control heterogeneous architectures, while taking advantage of a reduction of data transfers

    Factory: An Object-Oriented Parallel Programming Substrate for Deep Multiprocessors

    Full text link

    Multigrain shared memory

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 197-203).by Donald Yeung.Ph.D

    Algorithm/Architecture Co-Exploration of Visual Computing: Overview and Future Perspectives

    Get PDF
    Concurrently exploring both algorithmic and architectural optimizations is a new design paradigm. This survey paper addresses the latest research and future perspectives on the simultaneous development of video coding, processing, and computing algorithms with emerging platforms that have multiple cores and reconfigurable architecture. As the algorithms in forthcoming visual systems become increasingly complex, many applications must have different profiles with different levels of performance. Hence, with expectations that the visual experience in the future will become continuously better, it is critical that advanced platforms provide higher performance, better flexibility, and lower power consumption. To achieve these goals, algorithm and architecture co-design is significant for characterizing the algorithmic complexity used to optimize targeted architecture. This paper shows that seamless weaving of the development of previously autonomous visual computing algorithms and multicore or reconfigurable architectures will unavoidably become the leading trend in the future of video technology
    corecore