93 research outputs found

    Hybrid Computational Intelligence Models With Symbolic Rule Extraction For Pattern Classification

    Get PDF
    Tesis ini adalah berkenaan dengan pembangunan model kecerdikan berkomputer hibrid bagi menangani masalah pengelasan corak. This thesis is concerned with the development of hybrid Computational Intelligence (CI) models for tackling pattern classification problems

    Lipase Mediated Transesterification Of Waste Cooking Palm Oil For Biodiesel Production : Batch And Continuous Studies [TP359.B46 S623 2008 f rb].

    Get PDF
    Pembangunan strategi baru yang lebih cekap untuk menghasilkan biodiesel adalah perkara yang sangat penting. Ini kerana biodiesel telah diterima di seluruh dunia sebagai bahan bakar alternatif untuk enjin diesel. The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree.EThOS - Electronic Theses Online ServiceUniversity of WarwickOverseas Research Students Awards Scheme (ORSAS)GBUnited Kingdo

    Machine condition monitoring using artificial intelligence: The incremental learning and multi-agent system approach

    Get PDF
    Machine condition monitoring is gaining importance in industry due to the need to increase machine reliability and decrease the possible loss of production due to machine breakdown. Often the data available to build a condition monitoring system does not fully represent the system. It is also often common that the data becomes available in small batches over a period of time. Hence, it is important to build a system that is able to accommodate new data as it becomes available without compromising the performance of the previously learned data. In real-world applications, more than one condition monitoring technology is used to monitor the condition of a machine. This leads to large amounts of data, which require a highly skilled diagnostic specialist to analyze. In this thesis, artificial intelligence (AI) techniques are used to build a condition monitoring system that has incremental learning capabilities. Two incremental learning algorithms are implemented, the first method uses Fuzzy ARTMAP (FAM) algorithm and the second uses Learn++ algorithm. In addition, intelligent agents and multi-agent systems are used to build a condition monitoring system that is able to accommodate various analysis techniques. Experimentation was performed on two sets of condition monitoring data; the dissolved gas analysis (DGA) data obtained from high voltage bushings and the vibration data obtained from motor bearing. Results show that both Learn++ and FAM are able to accommodate new data without compromising the performance of classifiers on previously learned information. Results also show that intelligent agent and multi-agent system are able to achieve modularity and flexibility

    Adapting heterogeneous ensembles with particle swarm optimization for video face recognition

    Get PDF
    In video-based face recognition applications, matching is typically performed by comparing query samples against biometric models (i.e., an individual’s facial model) that is designed with reference samples captured during an enrollment process. Although statistical and neural pattern classifiers may represent a flexible solution to this kind of problem, their performance depends heavily on the availability of representative reference data. With operators involved in the data acquisition process, collection and analysis of reference data is often expensive and time consuming. However, although a limited amount of data is initially available during enrollment, new reference data may be acquired and labeled by an operator over time. Still, due to a limited control over changing operational conditions and personal physiology, classification systems used for video-based face recognition are confronted to complex and changing pattern recognition environments. This thesis concerns adaptive multiclassifier systems (AMCSs) for incremental learning of new data during enrollment and update of biometric models. To avoid knowledge (facial models) corruption over time, the proposed AMCS uses a supervised incremental learning strategy based on dynamic particle swarm optimization (DPSO) to evolve a swarm of fuzzy ARTMAP (FAM) neural networks in response to new data. As each particle in a FAM hyperparameter search space corresponds to a FAM network, the learning strategy adapts learning dynamics by co-optimizing all their parameters – hyperparameters, weights, and architecture – in order to maximize accuracy, while minimizing computational cost and memory resources. To achieve this, the relationship between the classification and optimization environments is studied and characterized, leading to these additional contributions. An initial version of this DPSO-based incremental learning strategy was applied to an adaptive classification system (ACS), where the accuracy of a single FAM neural network is maximized. It is shown that the original definition of a classification system capable of supervised incremental learning must be reconsidered in two ways. Not only must a classifier’s learning dynamics be adapted to maintain a high level of performance through time, but some previously acquired learning validation data must also be used during adaptation. It is empirically shown that adapting a FAM during incremental learning constitutes a type III dynamic optimization problem in the search space, where the local optima values and their corresponding position change in time. Results also illustrate the necessity of a long term memory (LTM) to store previously acquired data for unbiased validation and performance estimation. The DPSO-based incremental learning strategy was then modified to evolve the swarm (or pool) of FAM networks within an AMCS. A key element for the success of ensembles is tackled: classifier diversity. With several correlation and diversity indicators, it is shown that genoVIII type (i.e., hyperparameters) diversity in the optimization environment is correlated with classifier diversity in the classification environment. Following this result, properties of a DPSO algorithm that seeks to maintain genotype particle diversity to detect and follow local optima are exploited to generate and evolve diversified pools of FAMclassifiers. Furthermore, a greedy search algorithm is presented to perform an efficient ensemble selection based on accuracy and genotype diversity. This search algorithm allows for diversified ensembles without evaluating costly classifier diversity indicators, and selected ensembles also yield accuracy comparable to that of reference ensemble-based and batch learning techniques, with only a fraction of the resources. Finally, after studying the relationship between the classification environment and the search space, the objective space of the optimization environment is also considered. An aggregated dynamical niching particle swarm optimization (ADNPSO) algorithm is presented to guide the FAM networks according two objectives: FAM accuracy and computational cost. Instead of purely solving a multi-objective optimization problem to provide a Pareto-optimal front, the ADNPSO algorithm aims to generate pools of classifiers among which both genotype and phenotype (i.e., objectives) diversity are maximized. ADNPSO thus uses information in the search spaces to guide particles towards different local Pareto-optimal fronts in the objective space. A specialized archive is then used to categorize solutions according to FAMnetwork size and then capture locally non-dominated classifiers. These two components are then integrated to the AMCS through an ADNPSO-based incremental learning strategy. The AMCSs proposed in this thesis are promising since they create ensembles of classifiers designed with the ADNPSO-based incremental learning strategy and provide a high level of accuracy that is statistically comparable to that obtained through mono-objective optimization and reference batch learning techniques, and yet requires a fraction of the computational cost

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3
    corecore