74,754 research outputs found

    Experience-driven formation of parts-based representations in a model of layered visual memory

    Get PDF
    Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.Comment: 34 pages, 12 Figures, 1 Table, published in Frontiers in Computational Neuroscience (Special Issue on Complex Systems Science and Brain Dynamics), http://www.frontiersin.org/neuroscience/computationalneuroscience/paper/10.3389/neuro.10/015.2009

    Local-HDP:Interactive Open-Ended 3D Object Categorization in Real-Time Robotic Scenarios

    Get PDF
    We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, the online variational inference method has been adapted for fast posterior approximation in the Local-HDP model. Experiments show that the proposed Local-HDP method outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency by a large margin. Moreover, two robotic experiments have been conducted to show the applicability of the proposed approach in real-time applications.Comment: 13 page

    Local-HDP:Interactive Open-Ended 3D Object Categorization

    Get PDF
    We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, an inference method is proposed that results in a fast posterior approximation. Experiments show that Local-HDP outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency with a large margin
    corecore