1,064 research outputs found

    Fine-To-Coarse Global Registration of RGB-D Scans

    Full text link
    RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Enhanced Tracking Aerial Image by Applying Frame Extraction Technique

    Get PDF
    An image registration method is introduced that is capable of registering images from different views of a 3-D scene in the presence of occlusion. The proposed method is capable of withstanding considerable occlusion and homogeneous areas in images. The only requirement of the method is for the ground to be locally flat and sufficient ground cover be visible in the frames being registered. With help of fusion technique we solve the problem of blur images. In previous project sometime object recognition is not possible they do not show appropriate area, path and location. So with the help of object recognition we show the appropriate location, path and area. Then it captured the motion images, static images, video and CCTV footage also. Because of occlusion sometime result not get correct or sometime problems are occurred but with the help of techniques solve the problem of occlusion. This method is applicable for the various investigation departments. For the purpose of tracking such as smuggling or any unwanted operations which are apply or performed by illegally. Various types of technique are applied for performing the tracking operation. That technique return the correct result according to object tracking. Camera is not supported this type of operation because they do not return the clear image result. So apply the drone and aircraft for capturing the long distance or multiview images
    • …
    corecore