1,779 research outputs found

    Dynamic Adaptation on Non-Stationary Visual Domains

    Full text link
    Domain adaptation aims to learn models on a supervised source domain that perform well on an unsupervised target. Prior work has examined domain adaptation in the context of stationary domain shifts, i.e. static data sets. However, with large-scale or dynamic data sources, data from a defined domain is not usually available all at once. For instance, in a streaming data scenario, dataset statistics effectively become a function of time. We introduce a framework for adaptation over non-stationary distribution shifts applicable to large-scale and streaming data scenarios. The model is adapted sequentially over incoming unsupervised streaming data batches. This enables improvements over several batches without the need for any additionally annotated data. To demonstrate the effectiveness of our proposed framework, we modify associative domain adaptation to work well on source and target data batches with unequal class distributions. We apply our method to several adaptation benchmark datasets for classification and show improved classifier accuracy not only for the currently adapted batch, but also when applied on future stream batches. Furthermore, we show the applicability of our associative learning modifications to semantic segmentation, where we achieve competitive results

    Categorical Exploratory Data Analysis: From Multiclass Classification and Response Manifold Analytics perspectives of baseball pitching dynamics

    Full text link
    From two coupled Multiclass Classification (MCC) and Response Manifold Analytics (RMA) perspectives, we develop Categorical Exploratory Data Analysis (CEDA) on PITCHf/x database for the information content of Major League Baseball's (MLB) pitching dynamics. MCC and RMA information contents are represented by one collection of multi-scales pattern categories from mixing geometries and one collection of global-to-local geometric localities from response-covariate manifolds, respectively. These collectives shed light on the pitching dynamics and maps out uncertainty of popular machine learning approaches. On MCC setting, an indirect-distance-measure based label embedding tree leads to discover asymmetry of mixing geometries among labels' point-clouds. A selected chain of complementary covariate feature groups collectively brings out multi-order mixing geometric pattern categories. Such categories then reveal the true nature of MCC predictive inferences. On RMA setting, multiple response features couple with multiple major covariate features to demonstrate physical principles bearing manifolds with a lattice of natural localities. With minor features' heterogeneous effects being locally identified, such localities jointly weave their focal characteristics into system understanding and provide a platform for RMA predictive inferences. Our CEDA works for universal data types, adopts non-linear associations and facilitates efficient feature-selections and inferences
    • …
    corecore