496 research outputs found

    Hierarchical LU preconditioning for the time-harmonic Maxwell equations

    Full text link
    The time-harmonic Maxwell equations are used to study the effect of electric and magnetic fields on each other. Although the linear systems resulting from solving this system using FEMs are sparse, direct solvers cannot reach the linear complexity. In fact, due to the indefinite system matrix, iterative solvers suffer from slow convergence. In this work, we study the effect of using the inverse of H\mathcal{H}-matrix approximations of the Galerkin matrices arising from N\'ed\'elec's edge FEM discretization to solve the linear system directly. We also investigate the impact of applying an HLU\mathcal{H}-LU factorization as a preconditioner and we study the number of iterations to solve the linear system using iterative solvers

    Frequency-robust preconditioning of boundary integral equations for acoustic transmission

    Full text link
    The scattering and transmission of harmonic acoustic waves at a penetrable material are commonly modelled by a set of Helmholtz equations. This system of partial differential equations can be rewritten into boundary integral equations defined at the surface of the objects and solved with the boundary element method (BEM). High frequencies or geometrical details require a fine surface mesh, which increases the number of degrees of freedom in the weak formulation. Then, matrix compression techniques need to be combined with iterative linear solvers to limit the computational footprint. Moreover, the convergence of the iterative linear solvers often depends on the frequency of the wave field and the objects' characteristic size. Here, the robust PMCHWT formulation is used to solve the acoustic transmission problem. An operator preconditioner based on on-surface radiation conditions (OSRC) is designed that yields frequency-robust convergence characteristics. Computational benchmarks compare the performance of this novel preconditioned formulation with other preconditioners and boundary integral formulations. The OSRC preconditioned PMCHWT formulation effectively simulates large-scale problems of engineering interest, such as focused ultrasound treatment of osteoid osteoma

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Computational Electromagnetism and Acoustics

    Get PDF
    It is a moot point to stress the significance of accurate and fast numerical methods for the simulation of electromagnetic fields and sound propagation for modern technology. This has triggered a surge of research in mathematical modeling and numerical analysis aimed to devise and improve methods for computational electromagnetism and acoustics. Numerical techniques for solving the initial boundary value problems underlying both computational electromagnetics and acoustics comprise a wide array of different approaches ranging from integral equation methods to finite differences. Their development faces a few typical challenges: highly oscillatory solutions, control of numerical dispersion, infinite computational domains, ill-conditioned discrete operators, lack of strong ellipticity, hysteresis phenomena, to name only a few. Profound mathematical analysis is indispensable for tackling these issues. Many outstanding contributions at this Oberwolfach conference on Computational Electromagnetism and Acoustics strikingly confirmed the immense recent progress made in the field. To name only a few highlights: there have been breakthroughs in the application and understanding of phase modulation and extraction approaches for the discretization of boundary integral equations at high frequencies. Much has been achieved in the development and analysis of discontinuous Galerkin methods. New insight have been gained into the construction and relationships of absorbing boundary conditions also for periodic media. Considerable progress has been made in the design of stable and space-time adaptive discretization techniques for wave propagation. New ideas have emerged for the fast and robust iterative solution for discrete quasi-static electromagnetic boundary value problems

    Accelerated Calder\'on preconditioning for Maxwell transmission problems

    Full text link
    We investigate a range of techniques for the acceleration of Calder\'on (operator) preconditioning in the context of boundary integral equation methods for electromagnetic transmission problems. Our objective is to mitigate as far as possible the high computational cost of the barycentrically-refined meshes necessary for the stable discretisation of operator products. Our focus is on the well-known PMCHWT formulation, but the techniques we introduce can be applied generically. By using barycentric meshes only for the preconditioner and not for the original boundary integral operator, we achieve significant reductions in computational cost by (i) using "reduced" Calder\'on preconditioners obtained by discarding constituent boundary integral operators that are not essential for regularisation, and (ii) adopting a ``bi-parametric'' approach in which we use a lower quality (cheaper) H\mathcal{H}-matrix assembly routine for the preconditioner than for the original operator, including a novel approach of discarding far-field interactions in the preconditioner. Using the boundary element software Bempp (www.bempp.com), we compare the performance of different combinations of these techniques in the context of scattering by multiple dielectric particles. Applying our accelerated implementation to 3D electromagnetic scattering by an aggregate consisting of 8 monomer ice crystals of overall diameter 1cm at 664GHz leads to a 99% reduction in memory cost and at least a 75% reduction in total computation time compared to a non-accelerated implementation

    Fast multipole method applied to 3D frequency domain elastodynamics

    Get PDF
    This article is concerned with the formulation and implementation of a fast multipole-accelerated BEM for 3-D elastodynamics in the frequency domain, based on the so-called diagonal form for the expansion of the elastodynamic fundamental solution, a multi-level strategy. As usual with the FM-BEM, the linear system of BEM equations is solved by GMRES, and the matrix is never explicitly formed. The truncation parameter in the multipole expansion is adjusted to the level, a feature known from recent published studies for the Maxwell equations. A preconditioning strategy based on the concept of sparse approximate inverse (SPAI) is presented and implemented. The proposed formulation is assessed on numerical examples involving O(105)O(10^{5}) BEM unknowns, which show in particular that, as expected, the proposed FM-BEM is much faster than the traditional BEM, and that the GMRES iteration count is significantly reduced when the SPAI preconditioner is used
    corecore