429 research outputs found

    Reified Context Models

    Full text link
    A classic tension exists between exact inference in a simple model and approximate inference in a complex model. The latter offers expressivity and thus accuracy, but the former provides coverage of the space, an important property for confidence estimation and learning with indirect supervision. In this work, we introduce a new approach, reified context models, to reconcile this tension. Specifically, we let the amount of context (the arity of the factors in a graphical model) be chosen "at run-time" by reifying it---that is, letting this choice itself be a random variable inside the model. Empirically, we show that our approach obtains expressivity and coverage on three natural language tasks

    Apprentissage discriminant des modèles continus en traduction automatique

    Get PDF
    Over the past few years, neural network (NN) architectures have been successfully applied to many Natural Language Processing (NLP) applications, such as Automatic Speech Recognition (ASR) and Statistical Machine Translation (SMT).For the language modeling task, these models consider linguistic units (i.e words and phrases) through their projections into a continuous (multi-dimensional) space, and the estimated distribution is a function of these projections. Also qualified continuous-space models (CSMs), their peculiarity hence lies in this exploitation of a continuous representation that can be seen as an attempt to address the sparsity issue of the conventional discrete models. In the context of SMT, these echniques have been applied on neural network-based language models (NNLMs) included in SMT systems, and oncontinuous-space translation models (CSTMs). These models have led to significant and consistent gains in the SMT performance, but are also considered as very expensive in training and inference, especially for systems involving large vocabularies. To overcome this issue, Structured Output Layer (SOUL) and Noise Contrastive Estimation (NCE) have been proposed; the former modifies the standard structure on vocabulary words, while the latter approximates the maximum-likelihood estimation (MLE) by a sampling method. All these approaches share the same estimation criterion which is the MLE ; however using this procedure results in an inconsistency between theobjective function defined for parameter stimation and the way models are used in the SMT application. The work presented in this dissertation aims to design new performance-oriented and global training procedures for CSMs to overcome these issues. The main contributions lie in the investigation and evaluation of efficient training methods for (large-vocabulary) CSMs which aim~:(a) to reduce the total training cost, and (b) to improve the efficiency of these models when used within the SMT application. On the one hand, the training and inference cost can be reduced (using the SOUL structure or the NCE algorithm), or by reducing the number of iterations via a faster convergence. This thesis provides an empirical analysis of these solutions on different large-scale SMT tasks. On the other hand, we propose a discriminative training framework which optimizes the performance of the whole system containing the CSM as a component model. The experimental results show that this framework is efficient to both train and adapt CSM within SMT systems, opening promising research perspectives.Durant ces dernières années, les architectures de réseaux de neurones (RN) ont été appliquées avec succès à de nombreuses applications en Traitement Automatique de Langues (TAL), comme par exemple en Reconnaissance Automatique de la Parole (RAP) ainsi qu'en Traduction Automatique (TA).Pour la tâche de modélisation statique de la langue, ces modèles considèrent les unités linguistiques (c'est-à-dire des mots et des segments) à travers leurs projections dans un espace continu (multi-dimensionnel), et la distribution de probabilité à estimer est une fonction de ces projections.Ainsi connus sous le nom de "modèles continus" (MC), la particularité de ces derniers se trouve dans l'exploitation de la représentation continue qui peut être considérée comme une solution au problème de données creuses rencontré lors de l'utilisation des modèles discrets conventionnels.Dans le cadre de la TA, ces techniques ont été appliquées dans les modèles de langue neuronaux (MLN) utilisés dans les systèmes de TA, et dans les modèles continus de traduction (MCT).L'utilisation de ces modèles se sont traduit par d'importantes et significatives améliorations des performances des systèmes de TA. Ils sont néanmoins très coûteux lors des phrases d'apprentissage et d'inférence, notamment pour les systèmes ayant un grand vocabulaire.Afin de surmonter ce problème, l'architecture SOUL (pour "Structured Output Layer" en anglais) et l'algorithme NCE (pour "Noise Contrastive Estimation", ou l'estimation contrastive bruitée) ont été proposés: le premier modifie la structure standard de la couche de sortie, alors que le second cherche à approximer l'estimation du maximum de vraisemblance (MV) par une méthode d’échantillonnage.Toutes ces approches partagent le même critère d'estimation qui est la log-vraisemblance; pourtant son utilisation mène à une incohérence entre la fonction objectif définie pour l'estimation des modèles, et la manière dont ces modèles seront utilisés dans les systèmes de TA.Cette dissertation vise à concevoir de nouvelles procédures d'entraînement des MC, afin de surmonter ces problèmes.Les contributions principales se trouvent dans l'investigation et l'évaluation des méthodes d'entraînement efficaces pour MC qui visent à: (i) réduire le temps total de l'entraînement, et (ii) améliorer l'efficacité de ces modèles lors de leur utilisation dans les systèmes de TA.D'un côté, le coût d'entraînement et d'inférence peut être réduit (en utilisant l'architecture SOUL ou l'algorithme NCE), ou la convergence peut être accélérée.La dissertation présente une analyse empirique de ces approches pour des tâches de traduction automatique à grande échelle.D'un autre côté, nous proposons un cadre d'apprentissage discriminant qui optimise la performance du système entier ayant incorporé un modèle continu.Les résultats expérimentaux montrent que ce cadre d'entraînement est efficace pour l'apprentissage ainsi que pour l'adaptation des MC au sein des systèmes de TA, ce qui ouvre de nouvelles perspectives prometteuses

    Occlusion resistant learning of intuitive physics from videos

    Get PDF
    To reach human performance on complex tasks, a key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation. This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences. Yet, most of these methods are restricted to the case where no, or only limited, occlusions occur. In this work we propose a probabilistic formulation of learning intuitive physics in 3D scenes with significant inter-object occlusions. In our formulation, object positions are modeled as latent variables enabling the reconstruction of the scene. We then propose a series of approximations that make this problem tractable. Object proposals are linked across frames using a combination of a recurrent interaction network, modeling the physics in object space, and a compositional renderer, modeling the way in which objects project onto pixel space. We demonstrate significant improvements over state-of-the-art in the intuitive physics benchmark of IntPhys. We apply our method to a second dataset with increasing levels of occlusions, showing it realistically predicts segmentation masks up to 30 frames in the future. Finally, we also show results on predicting motion of objects in real videos

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Preference Learning for Machine Translation

    Get PDF
    Automatic translation of natural language is still (as of 2017) a long-standing but unmet promise. While advancing at a fast rate, the underlying methods are still far from actually being able to reliably capture syntax or semantics of arbitrary utterances of natural language, way off transporting the encoded meaning into a second language. However, it is possible to build useful translating machines when the target domain is well known and the machine is able to learn and adapt efficiently and promptly from new inputs. This is possible thanks to efficient and effective machine learning methods which can be applied to automatic translation. In this work we present and evaluate methods for three distinct scenarios: a) We develop algorithms that can learn from very large amounts of data by exploiting pairwise preferences defined over competing translations, which can be used to make a machine translation system robust to arbitrary texts from varied sources, but also enable it to learn effectively to adapt to new domains of data; b) We describe a method that is able to efficiently learn external models which adhere to fine-grained preferences that are extracted from a constricted selection of translated material, e.g. for adapting to users or groups of users in a computer-aided translation scenario; c) We develop methods for two machine translation paradigms, neural- and traditional statistical machine translation, to directly adapt to user-defined preferences in an interactive post-editing scenario, learning precisely adapted machine translation systems. In all of these settings, we show that machine translation can be made significantly more useful by careful optimization via preference learning
    corecore