2,075 research outputs found

    Multi-Cue Structure Preserving MRF for Unconstrained Video Segmentation

    Full text link
    Video segmentation is a stepping stone to understanding video context. Video segmentation enables one to represent a video by decomposing it into coherent regions which comprise whole or parts of objects. However, the challenge originates from the fact that most of the video segmentation algorithms are based on unsupervised learning due to expensive cost of pixelwise video annotation and intra-class variability within similar unconstrained video classes. We propose a Markov Random Field model for unconstrained video segmentation that relies on tight integration of multiple cues: vertices are defined from contour based superpixels, unary potentials from temporal smooth label likelihood and pairwise potentials from global structure of a video. Multi-cue structure is a breakthrough to extracting coherent object regions for unconstrained videos in absence of supervision. Our experiments on VSB100 dataset show that the proposed model significantly outperforms competing state-of-the-art algorithms. Qualitative analysis illustrates that video segmentation result of the proposed model is consistent with human perception of objects

    Social Scene Understanding: End-to-End Multi-Person Action Localization and Collective Activity Recognition

    Get PDF
    We present a unified framework for understanding human social behaviors in raw image sequences. Our model jointly detects multiple individuals, infers their social actions, and estimates the collective actions with a single feed-forward pass through a neural network. We propose a single architecture that does not rely on external detection algorithms but rather is trained end-to-end to generate dense proposal maps that are refined via a novel inference scheme. The temporal consistency is handled via a person-level matching Recurrent Neural Network. The complete model takes as input a sequence of frames and outputs detections along with the estimates of individual actions and collective activities. We demonstrate state-of-the-art performance of our algorithm on multiple publicly available benchmarks

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    Deep Hierarchical Parsing for Semantic Segmentation

    Full text link
    This paper proposes a learning-based approach to scene parsing inspired by the deep Recursive Context Propagation Network (RCPN). RCPN is a deep feed-forward neural network that utilizes the contextual information from the entire image, through bottom-up followed by top-down context propagation via random binary parse trees. This improves the feature representation of every super-pixel in the image for better classification into semantic categories. We analyze RCPN and propose two novel contributions to further improve the model. We first analyze the learning of RCPN parameters and discover the presence of bypass error paths in the computation graph of RCPN that can hinder contextual propagation. We propose to tackle this problem by including the classification loss of the internal nodes of the random parse trees in the original RCPN loss function. Secondly, we use an MRF on the parse tree nodes to model the hierarchical dependency present in the output. Both modifications provide performance boosts over the original RCPN and the new system achieves state-of-the-art performance on Stanford Background, SIFT-Flow and Daimler urban datasets.Comment: IEEE CVPR 201

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung
    • …
    corecore