128 research outputs found

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Get PDF
    Blockchain (BC) and software-defined networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization—named BC–SDN—based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC–SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC–SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Full text link
    Blockchain (BC) and Software-Defined Networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization -- named BC-SDN -- based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC-SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC-SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios.Comment: 42 pages, 14 figures, to be published in Journal of Network and Systems Management - Special Issue on Blockchains and Distributed Ledgers in Network and Service Managemen

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing

    Enabling Edge-Intelligence in Resource-Constrained Autonomous Systems

    Get PDF
    The objective of this research is to shift Machine Learning algorithms from resource-extensive server/cloud to compute-limited edge nodes by designing energy-efficient ML systems. Multiple sub-areas of research in this domain are explored for the application of drone autonomous navigation. Our principal goal is to enable the UAV to autonomously navigate using Reinforcement Learning, without incurring any additional hardware or sensor cost. Most of the lightweight UAVs are limited in their resources such as compute capabilities and onboard energy source, and the conventional state-of-the-art ML algorithms cannot be directly implemented on them. This research addresses this issue by devising energy-efficient ML algorithms, modifying existing ML algorithms, designing energy-efficient ML accelerators, and leveraging the hardware-algorithm co-design. RL is notorious for being data-hungry and requires trials and error for it to converge. Hence it cannot be directly implemented on real drones until the issues of safety, data limitations, and reward generation is addressed. Instead of learning the task from scratch, just like humans, RL algorithms can benefit from prior knowledge which can help them converge to their goals in less time and consume less energy. Multiple drones can be collectively used to help each other by sharing their locally learned knowledge. Such distributive systems can help agents learn their respective local tasks faster but may become vulnerable to attacks in the presence of adversarial agents which needs to be addressed. Finally, the improvement in the energy efficiency of RL-based systems achieved from the algorithmic approaches is limited by the underlying hardware and computing architectures. Hence, these need to be redesigned in an application-specific way exploring and exploiting the nature of the most used ML operators This can be done by exploring new computing devices and considering the data reuse and dataflow of ML operators within the architectural design. This research discusses these issues by addressing them and presenting better alternatives. It is concluded that energy consumption at multiple levels of hierarchy needs to be addressed by exploring algorithmic, hardware-based, and algorithm-hardware co-design approaches.Ph.D

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Smart data management with BIM for Architectural Heritage

    Get PDF
    In the last years smart buildings topic has received much attention as well as Building Information Modelling (BIM) and interoperability as independent fields. Linking these topics is an essential research target to help designers and stakeholders to run processes more efficiently. Working on a smart building requires the use of Innovation and Communication Technology (ICT) to optimize design, construction and management. In these terms, several technologies such as sensors for remote monitoring and control, building equipment, management software, etc. are available in the market. As BIM provides an enormous amount of information in its database and theoretically it is able to work with all kind of data sources using interoperability, it is essential to define standards for both data contents and format exchange. In this way, a possibility to align research activity with Horizon 2020 is the investigation of energy saving using ICT. Unfortunately, comparing the Architecture Engineering and Construction (AEC) Industry with other sectors it is clear how in the building field advanced information technology applications have not been adopted yet. However in the last years, the adoption of new methods for the data management has been investigated by many researchers. So, basing on the above considerations, the main purpose of this thesis is investigate the use of BIM methodology relating to existing buildings concerning on three main topics: • Smart data management for architectural heritage preservation; • District data management for energy reduction; • The maintenance of highrises. For these reasons, data management acquires a very important value relating to the optimization of the building process and it is considered the most important goal for this research. Taking into account different kinds of architectural heritage, the attention is focused on the existing and historical buildings that usually have characterized by several constraints. Starting from data collection, a BIM model was developed and customized in function of its objectives, and providing information for different simulation tests. Finally, data visualization was investigated through the Virtual Reality(VR) and Augmented Reality (AR). Certainly, the creation of a 3D parametric model implies that data is organized according to the use of individual users that are involved in the building process. This means that each 3D model can be developed with different Levels of Detail/Development (LODs) basing on the goal of the data source. Along this thesis the importance of LODs is taken into account related to the kind of information filled in a BIM model. In fact, basing on the objectives of each project a BIM model can be developed in a different way to facilitate the querying data for the simulations tests.\ud The three topics were compared considering each step of the building process workflow, highlighting the main differences, evaluating the strengths and weaknesses of BIM methodology. In these terms, the importance to set a BIM template before the modelling step was pointed out, because it provides the possibility to manage information in order to be collected and extracted for different purposes and by specific users. Moreover, basing on the results obtained in terms of the 3D parametric model and in terms of process, a proper BIM maturity level was determined for each topic. Finally, the value of interoperability was arisen from these tests considering that it provided the opportunity to develop a framework for collaboration, involving all parties of the building industry

    Ambient Assistive Living (AAL) Technology for Dementia and Aging in Place: An inclusive approach to knowledge acquisition for the design community

    Get PDF
    The growing concern for safety, care and wellbeing of older people ad increase in age related health issues such as dementia, has generated a great interest in AAL technologies as a means to support the elderly and caregiver needs in daily living tasks, extend aging at home, and maintaining social inclusion for as long as possible. As technology becomes more ubiquitous in home environments, new design challenges will arise for the design/build community. Literature search revealed that there is now North American Guideline for AAL technology available. This study required an integrated design process utilizing in-person and online surveys which included interdisciplinary contributions from healthcare experts. building automation experts. interior designers and architects in the development of an educational structure fro a proposed North American AAL Technology Guideline. Research indicated that the educational structure would need to consider the developmental continuum in learning for professionals as they move from novice to expert in practice. Keywords: aging, ambient assisted living (AAL) technology, dementia, home automation, innovation models, Maslow's Hierarchy of Needs, professional developmental continuu

    International Taxation of Electronic Commerce

    Get PDF
    This article submits proposals for taxing the digital economy on the basis of the benefits and single tax principles

    Proceedings of the Eighth Italian Conference on Computational Linguistics CliC-it 2021

    Get PDF
    The eighth edition of the Italian Conference on Computational Linguistics (CLiC-it 2021) was held at Università degli Studi di Milano-Bicocca from 26th to 28th January 2022. After the edition of 2020, which was held in fully virtual mode due to the health emergency related to Covid-19, CLiC-it 2021 represented the first moment for the Italian research community of Computational Linguistics to meet in person after more than one year of full/partial lockdown
    • …
    corecore