710 research outputs found

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Recent advances in connected vehicles via information-centric networking

    Get PDF
    V2X communication technology allows vehicles to communicate with each other, infrastructures as well as other parties. It is considered as a vital role in realizing future Intelligent Transport System (ITS). On one hand V2X is facing various expectations that requested by different features of applications, On the other hand, V2X has to overcome problems caused by the natures of high mobile vehicle environment. ICN proposed as the a substitution for future Internet rely on its naming design is likely to associate with V2X well in contrast to convention TCP/IP solution. This paper viewed recent relevant literatures from which unaddressed problems are identified with discussion of possible solutions. From this work, we are positioning our future efforts to fulfil such gaps

    Vehicular Ad Hoc Networks: Growth and Survey for Three Layers

    Get PDF
    A vehicular ad hoc network (VANET) is a mobile ad hoc network that allows wireless communication between vehicles, as well as between vehicles and roadside equipment. Communication between vehicles promotes safety and reliability, and can be a source of entertainment. We investigated the historical development, characteristics, and application fields of VANET and briefly introduced them in this study. Advantages and disadvantages were discussed based on our analysis and comparison of various classes of MAC and routing protocols applied to VANET. Ideas and breakthrough directions for inter-vehicle communication designs were proposed based on the characteristics of VANET. This article also illustrates physical, MAC, and network layer in details which represent the three layers of VANET. The main works of the active research institute on VANET were introduced to help researchers track related advanced research achievements on the subject

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times
    • …
    corecore