172 research outputs found

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Group-based secure communication for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are a newly developed networking technology consisting of multifunctional sensor nodes that are small in size and communicate over short distances. Continuous growth in the use of Wireless Sensor Networks (WSN) in sensitive applications such as military or hostile environments and also generally has resulted m a requirement for effective security mechanisms in the system design In order to protect the sensitive data and the sensor readings, shared keys should be used to encrypt the exchanged messages between communicating nodes. Many key management schemes have been developed recently and a serious threat highlighted in all of these schemes is that of node capture attacks, where an adversary gains full control over a sensor node through direct physical access. This can lead an adversary to compromise the communication of an entire WSN. Additionally ignoring security issues related to data aggregation can also bring large damage to WSNs. Furthermore, in case an aggregator node, group leader or cluster head node fails there should be a secure and efficient way of electing or selecting a new aggregator or group leader node in order to avoid adversary node to be selected as a new group leader. A key management protocol for mobile sensor nodes is needed to enable them to securely communicate and authenticate with the rest of the WSN

    HIMMO - A lightweight collusion-resistant key predistribution scheme

    Get PDF
    In this paper we introduce HIMMO as a truly practical and lightweight collusion-resistant key predistribution scheme. The scheme is reminiscent ofBlundo et al\u27s elegant key predistribution scheme, in which the master key is a symmetric bivariate polynomial over a finite field, and a unique common key is defined for every pair of nodes as the evaluation of the polynomial at the finite field elements associated with the nodes. Unlike Blundo et al\u27s scheme, however, which completely breaks down once the number of colluding nodes exceeds the degree of the polynomial, the new scheme is designed to tolerateany number of colluding nodes. Key establishment in HIMMO amounts to the evaluation of a single low-degree univariate polynomial involving reasonably sized numbers, thus exhibiting excellent performance even for constrained devices such as 8-bit CPUs, as we demonstrate. On top of this, the scheme is very versatile, as it not only supports implicit authentication of the nodes like any key predistribution scheme, but also supports identity-based key predistribution in a natural and efficient way. The latter property derives from the fact that HIMMO supports long node identifiers at a reasonable cost, allowing outputs of a collision-resistant hash function to be used as node identifiers. Moreover, HIMMO allows for a transparent way to split the master key between multiple parties. The new scheme is superior to any of the existing alternatives due to the intricate way it combines the use of multiple symmetric bivariate polynomials evaluated over ``different\u27\u27 finite rings. We have extensively analyzed the security of HIMMO against two attacks. For these attacks, we have identified the Hiding Information (HI) problem and the Mixing Modular Operations (MMO) problem as the underlying problems. These problems are closely related to some well-defined lattice problems, and therefore the best attacks on HIMMO are dependent on lattice-basis reduction. Based on these connections, we propose concrete values for all relevant parameters, for which we conjecture that the scheme is secure

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Exploratory Cluster Analysis from Ubiquitous Data Streams using Self-Organizing Maps

    Get PDF
    This thesis addresses the use of Self-Organizing Maps (SOM) for exploratory cluster analysis over ubiquitous data streams, where two complementary problems arise: first, to generate (local) SOM models over potentially unbounded multi-dimensional non-stationary data streams; second, to extrapolate these capabilities to ubiquitous environments. Towards this problematic, original contributions are made in terms of algorithms and methodologies. Two different methods are proposed regarding the first problem. By focusing on visual knowledge discovery, these methods fill an existing gap in the panorama of current methods for cluster analysis over data streams. Moreover, the original SOM capabilities in performing both clustering of observations and features are transposed to data streams, characterizing these contributions as versatile compared to existing methods, which target an individual clustering problem. Also, additional methodologies that tackle the ubiquitous aspect of data streams are proposed in respect to the second problem, allowing distributed and collaborative learning strategies. Experimental evaluations attest the effectiveness of the proposed methods and realworld applications are exemplified, namely regarding electric consumption data, air quality monitoring networks and financial data, motivating their practical use. This research study is the first to clearly address the use of the SOM towards ubiquitous data streams and opens several other research opportunities in the future

    Group Key Management in Wireless Ad-Hoc and Sensor Networks

    Get PDF
    A growing number of secure group applications in both civilian and military domains is being deployed in WAHNs. A Wireless Ad-hoc Network (WARN) is a collection of autonomous nodes or terminals that communicate with each other by forming a multi-hop radio network and maintaining connectivity in a decentralized manner. A Mobile Ad-hoc Network (MANET) is a special type of WARN with mobile users. MANET nodes have limited communication, computational capabilities, and power. Wireless Sensor Networks (WSNs) are sensor networks with massive numbers of small, inexpensive devices pervasive throughout electrical and mechanical systems and ubiquitous throughout the environment that monitor and control most aspects of our physical world. In a WAHNs and WSNs with un-trusted nodes, nodes may falsify information, collude to disclose system keys, or even passively refuse to collaborate. Moreover, mobile adversaries might invade more than one node and try to reveal all system secret keys. Due to these special characteristics, key management is essential in securing such networks. Current protocols for secure group communications used in fixed networks tend to be inappropriate. The main objective of this research is to propose, design and evaluate a suitable key management approach for secure group communications to support WAHNs and WSNs applications. Key management is usually divided into key analysis, key assignment, key generation and key distribution. In this thesis, we tried to introduce key management schemes to provide secure group communications in both WAHNs and WSNs. Starting with WAHNs, we developed a key management scheme. A novel architecture for secure group communications was proposed. Our proposed scheme handles key distribution through Combinatorial Key Distribution Scheme (CKDS). We followed with key generation using Threshold-based Key Generation in WAHNs (TKGS). For key assignment, we proposed Combinatorial Key Assignment Scheme (CKAS), which assigns closer key strings to co-located nodes. We claim that our architecture can readily be populated with components to support objectives such as fault tolerance, full-distribution and scalability to mitigate WAHNs constraints. In our architecture, group management is integrated with multicast at the application layer. For key management in WSNs, we started with DCK, a modified scheme suitable for WSNs. In summary, the DCK achieves the following: (1) cluster leader nodes carry the major part of the key management overhead; (2) DCK consumes less than 50% of the energy consumed by SHELL in key management; (3) localizing key refreshment and handling node capture enhances the security by minimizing the amount of information known by each node about other portions of the network; and (4) since DCK does not involve the use of other clusters to maintain local cluster data, it scales better from a storage point of view with the network size represented by the number of clusters. We went further and proposed the use of key polynomials with DCK to enhance the resilience of multiple node capturing. Comparing our schemes to static and dynamic key management, our scheme was found to enhance network resilience at a smaller polynomial degree t and accordingly with less storage per node

    Research summary, January 1989 - June 1990

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established at NASA ARC in June of 1983. RIACS is privately operated by the Universities Space Research Association (USRA), a consortium of 62 universities with graduate programs in the aerospace sciences, under a Cooperative Agreement with NASA. RIACS serves as the representative of the USRA universities at ARC. This document reports our activities and accomplishments for the period 1 Jan. 1989 - 30 Jun. 1990. The following topics are covered: learning systems, networked systems, and parallel systems
    corecore