479 research outputs found

    Hierarchical Gated Recurrent Neural Tensor Network for Answer Triggering

    Full text link
    In this paper, we focus on the problem of answer triggering ad-dressed by Yang et al. (2015), which is a critical component for a real-world question answering system. We employ a hierarchical gated recurrent neural tensor (HGRNT) model to capture both the context information and the deep in-teractions between the candidate answers and the question. Our result on F val-ue achieves 42.6%, which surpasses the baseline by over 10 %

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Towards Evaluating Veracity of Textual Statements on the Web

    Get PDF
    The quality of digital information on the web has been disquieting due to the absence of careful checking. Consequently, a large volume of false textual information is being produced and disseminated with misstatements of facts. The potential negative influence on the public, especially in time-sensitive emergencies, is a growing concern. This concern has motivated this thesis to deal with the problem of veracity evaluation. In this thesis, we set out to develop machine learning models for the veracity evaluation of textual claims based on stance and user engagements. Such evaluation is achieved from three aspects: news stance detection engaged user replies in social media and the engagement dynamics. First of all, we study stance detection in the context of online news articles where a claim is predicted to be true if it is supported by the evidential articles. We propose to manifest a hierarchical structure among stance classes: the high-level aims at identifying relatedness, while the low-level aims at classifying, those identified as related, into the other three classes, i.e., agree, disagree, and discuss. This model disentangles the semantic difference of related/unrelated and the other three stances and helps address the class imbalance problem. Beyond news articles, user replies on social media platforms also contain stances and can infer claim veracity. Claims and user replies in social media are usually short and can be ambiguous; to deal with semantic ambiguity, we design a deep latent variable model with a latent distribution to allow multimodal semantic distribution. Also, marginalizing the latent distribution enables the model to be more robust in relatively smalls-sized datasets. Thirdly, we extend the above content-based models by tracking the dynamics of user engagement in misinformation propagation. To capture these dynamics, we formulate user engagements as a dynamic graph and extract its temporal evolution patterns and geometric features based on an attention-modified Temporal Point Process. This allows to forecast the cumulative number of engaged users and can be useful in assessing the threat level of an individual piece of misinformation. The ability to evaluate veracity and forecast the scale growth of engagement networks serves to practically assist the minimization of online false information’s negative impacts

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Trajectory Prediction with Event-Based Cameras for Robotics Applications

    Get PDF
    This thesis presents the study, analysis, and implementation of a framework to perform trajectory prediction using an event-based camera for robotics applications. Event-based perception represents a novel computation paradigm based on unconventional sensing technology that holds promise for data acquisition, transmission, and processing at very low latency and power consumption, crucial in the future of robotics. An event-based camera, in particular, is a sensor that responds to light changes in the scene, producing an asynchronous and sparse output over a wide illumination dynamic range. They only capture relevant spatio-temporal information - mostly driven by motion - at high rate, avoiding the inherent redundancy in static areas of the field of view. For such reasons, this device represents a potential key tool for robots that must function in highly dynamic and/or rapidly changing scenarios, or where the optimisation of the resources is fundamental, like robots with on-board systems. Prediction skills are something humans rely on daily - even unconsciously - for instance when driving, playing sports, or collaborating with other people. In the same way, predicting the trajectory or the end-point of a moving target allows a robot to plan for appropriate actions and their timing in advance, interacting with it in many different manners. Moreover, prediction is also helpful for compensating robot internal delays in the perception-action chain, due for instance to limited sensors and/or actuators. The question I addressed in this work is whether event-based cameras are advantageous or not in trajectory prediction for robotics. In particular, if classical deep learning architecture used for this task can accommodate for event-based data, working asynchronously, and which benefit they can bring with respect to standard cameras. The a priori hypothesis is that being the sampling of the scene driven by motion, such a device would allow for more meaningful information acquisition, improving the prediction accuracy and processing data only when needed - without any information loss or redundant acquisition. To test the hypothesis, experiments are mostly carried out using the neuromorphic iCub, a custom version of the iCub humanoid platform that mounts two event-based cameras in the eyeballs, along with standard RGB cameras. To further motivate the work on iCub, a preliminary step is the evaluation of the robot's internal delays, a value that should be compensated by the prediction to interact in real-time with the object perceived. The first part of this thesis sees the implementation of the event-based framework for prediction, to answer the question if Long Short-Term Memory neural networks, the architecture used in this work, can be combined with event-based cameras. The task considered is the handover Human-Robot Interaction, during which the trajectory of the object in the human's hand must be inferred. Results show that the proposed pipeline can predict both spatial and temporal coordinates of the incoming trajectory with higher accuracy than model-based regression methods. Moreover, fast recovery from failure cases and adaptive prediction horizon behavior are exhibited. Successively, I questioned how much the event-based sampling approach can be convenient with respect to the classical fixed-rate approach. The test case used is the trajectory prediction of a bouncing ball, implemented with the pipeline previously introduced. A comparison between the two sampling methods is analysed in terms of error for different working rates, showing how the spatial sampling of the event-based approach allows to achieve lower error and also to adapt the computational load dynamically, depending on the motion in the scene. Results from both works prove that the merging of event-based data and Long Short-Term Memory networks looks promising for spatio-temporal features prediction in highly dynamic tasks, and paves the way to further studies about the temporal aspect and to a wide range of applications, not only robotics-related. Ongoing work is now focusing on the robot control side, finding the best way to exploit the spatio-temporal information provided by the predictor and defining the optimal robot behavior. Future work will see the shift of the full pipeline - prediction and robot control - to a spiking implementation. First steps in this direction have been already made thanks to a collaboration with a group from the University of Zurich, with which I propose a closed-loop motor controller implemented on a mixed-signal analog/digital neuromorphic processor, emulating a classical PID controller by means of spiking neural networks
    • …
    corecore