9,908 research outputs found

    Creating a geodemographic classification model within geo-marketing: the case of Eskişehir province

    Get PDF
    Businesses today face great competition in their operations, making it necessary for them to adopt a “customer-oriented” approach. In this competitive environment, where customers are more valuable, enterprises accrue great advantages from an understanding of the characteristics of the target audience in all dimensions. This is where the importance of geo-marketing and demographic segmentation for enterprises emerges. This study performed a geo-demographic segmentation of the urban neighbourhoods of Eskişehir province and sought to determine the characteristics of the people living in these neighbourhoods at the household level. The Groups created using the SPSS package program as well as Principal Components Analysis (PCA) and Hierarchical Clustering Analysis were then mapped on the GIS platform as urban neighbourhoods

    Clustering of categorical variables around latent variables

    Get PDF
    In the framework of clustering, the usual aim is to cluster observations and not variables. However the issue of variable clustering clearly appears for dimension reduction, selection of variables or in some case studies (sensory analysis, biochemistry, marketing, etc.). Clustering of variables is then studied as a way to arrange variables into homogeneous clusters, thereby organizing data into meaningful structures. Once the variables are clustered into groups such that variables are similar to the other variables belonging to their cluster, the selection of a subset of variables is possible. Several specific methods have been developed for the clustering of numerical variables. However concerning categorical variables, much less methods have been proposed. In this paper we extend the criterion used by Vigneau and Qannari (2003) in their Clustering around Latent Variables approach for numerical variables to the case of categorical data. The homogeneity criterion of a cluster of categorical variables is defined as the sum of the correlation ratio between the categorical variables and a latent variable, which is in this case a numerical variable. We show that the latent variable maximizing the homogeneity of a cluster can be obtained with Multiple Correspondence Analysis. Different algorithms for the clustering of categorical variables are proposed: iterative relocation algorithm, ascendant and divisive hierarchical clustering. The proposed methodology is illustrated by a real data application to satisfaction of pleasure craft operators.clustering of categorical variables, correlation ratio, iterative relocation algorithm, hierarchical clustering

    Combining classification techniques to define topo-climatic landscapes

    Get PDF
    Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved

    Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster

    Full text link
    We develop a stochastic modeling approach based on spatial point processes of log-Gaussian Cox type for a collection of around 5000 landslide events provoked by a precipitation trigger in Sicily, Italy. Through the embedding into a hierarchical Bayesian estimation framework, we can use the Integrated Nested Laplace Approximation methodology to make inference and obtain the posterior estimates. Several mapping units are useful to partition a given study area in landslide prediction studies. These units hierarchically subdivide the geographic space from the highest grid-based resolution to the stronger morphodynamic-oriented slope units. Here we integrate both mapping units into a single hierarchical model, by treating the landslide triggering locations as a random point pattern. This approach diverges fundamentally from the unanimously used presence-absence structure for areal units since we focus on modeling the expected landslide count jointly within the two mapping units. Predicting this landslide intensity provides more detailed and complete information as compared to the classically used susceptibility mapping approach based on relative probabilities. To illustrate the model's versatility, we compute absolute probability maps of landslide occurrences and check its predictive power over space. While the landslide community typically produces spatial predictive models for landslides only in the sense that covariates are spatially distributed, no actual spatial dependence has been explicitly integrated so far for landslide susceptibility. Our novel approach features a spatial latent effect defined at the slope unit level, allowing us to assess the spatial influence that remains unexplained by the covariates in the model

    Color Image Clustering using Block Truncation Algorithm

    Get PDF
    With the advancement in image capturing device, the image data been generated at high volume. If images are analyzed properly, they can reveal useful information to the human users. Content based image retrieval address the problem of retrieving images relevant to the user needs from image databases on the basis of low-level visual features that can be derived from the images. Grouping images into meaningful categories to reveal useful information is a challenging and important problem. Clustering is a data mining technique to group a set of unsupervised data based on the conceptual clustering principal: maximizing the intraclass similarity and minimizing the interclass similarity. Proposed framework focuses on color as feature. Color Moment and Block Truncation Coding (BTC) are used to extract features for image dataset. Experimental study using K-Means clustering algorithm is conducted to group the image dataset into various clusters

    Image databases: Problems and perspectives

    Get PDF
    With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined

    Towards Real-Time Geodemographics: Clustering Algorithm Performance for Large Multidimensional Spatial Databases

    Get PDF
    and demographic characteristics of people living within small geographic areas. They have hitherto been regarded as products, which are the final “best” outcome that can be achieved using available data and algorithms. However, reduction in computational cost, increased network bandwidths and increasingly accessible spatial data infrastructures have together created the potential for the creation of classifications in near real time within distributed online environments. Yet paramount to the creation of truly real time geodemographic classifications is the ability for software to process and efficiency cluster large multidimensional spatial databases within a timescale that is consistent with online user interaction. To this end,this article evaluates the computational efficiency of a number of clustering algorithms with a view to creating geodemographic classifications “on the fly” at a range of different geographic scales.tgis_1197 283..29
    corecore