4,597 research outputs found

    Strategies for Optimising DRAM Repair

    Get PDF
    Dynamic Random Access Memories (DRAM) are large complex devices, prone to defects during manufacture. Yield is improved by the provision of redundant structures used to repair these defects. This redundancy is often implemented by the provision of excess memory capacity and programmable address logic allowing the replacement of faulty cells within the memory array. As the memory capacity of DRAM devices has increased, so has the complexity of their redundant structures, introducing increasingly complex restrictions and interdependencies upon the use of this redundant capacity. Currently redundancy analysis algorithms solving the problem of optimally allocating this redundant capacity must be manually customised for each new device. Compromises made to reduce the complexity, and human error, reduce the efficacy of these algorithms. This thesis develops a methodology for automating the customisation of these redundancy analysis algorithms. Included are: a modelling language describing the redundant structures (including the restrictions and interdependencies placed upon their use), algorithms manipulating this model to generate redundancy analysis algorithms, and methods for translating those algorithms into executable code. Finally these concepts are used to develop a prototype software tool capable of generating redundancy analysis algorithms customised for a specified device

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Robot graphic simulation testbed

    Get PDF
    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    ISDN at NASA Lewis Research Center

    Get PDF
    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness
    corecore