1,311 research outputs found

    Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling

    Full text link
    In this paper, we present hierarchical relationbased latent Dirichlet allocation (hrLDA), a data-driven hierarchical topic model for extracting terminological ontologies from a large number of heterogeneous documents. In contrast to traditional topic models, hrLDA relies on noun phrases instead of unigrams, considers syntax and document structures, and enriches topic hierarchies with topic relations. Through a series of experiments, we demonstrate the superiority of hrLDA over existing topic models, especially for building hierarchies. Furthermore, we illustrate the robustness of hrLDA in the settings of noisy data sets, which are likely to occur in many practical scenarios. Our ontology evaluation results show that ontologies extracted from hrLDA are very competitive with the ontologies created by domain experts

    Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts

    Get PDF
    We present a Bayesian nonparametric framework for multilevel clustering which utilizes group-level context information to simultaneously discover low-dimensional structures of the group contents and partitions groups into clusters. Using the Dirichlet process as the building block, our model constructs a product base-measure with a nested structure to accommodate content and context observations at multiple levels. The proposed model possesses properties that link the nested Dirichlet processes (nDP) and the Dirichlet process mixture models (DPM) in an interesting way: integrating out all contents results in the DPM over contexts, whereas integrating out group-specific contexts results in the nDP mixture over content variables. We provide a Polya-urn view of the model and an efficient collapsed Gibbs inference procedure. Extensive experiments on real-world datasets demonstrate the advantage of utilizing context information via our model in both text and image domains.Comment: Full version of ICML 201

    Topic modeling-based domain adaptation for system combination

    Get PDF
    This paper gives the system description of the domain adaptation team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). We used the results of unsupervised document classification as meta information to the system combination module. For the Spanish-English data, our strategy achieved 26.33 BLEU points, 0.33 BLEU points absolute improvement over the standard confusion-network-based system combination. This was the best score in terms of BLEU among six participants in ML4HMT-12

    Hierarchically Clustered Representation Learning

    Full text link
    The joint optimization of representation learning and clustering in the embedding space has experienced a breakthrough in recent years. In spite of the advance, clustering with representation learning has been limited to flat-level categories, which often involves cohesive clustering with a focus on instance relations. To overcome the limitations of flat clustering, we introduce hierarchically-clustered representation learning (HCRL), which simultaneously optimizes representation learning and hierarchical clustering in the embedding space. Compared with a few prior works, HCRL firstly attempts to consider a generation of deep embeddings from every component of the hierarchy, not just leaf components. In addition to obtaining hierarchically clustered embeddings, we can reconstruct data by the various abstraction levels, infer the intrinsic hierarchical structure, and learn the level-proportion features. We conducted evaluations with image and text domains, and our quantitative analyses showed competent likelihoods and the best accuracies compared with the baselines.Comment: 10 pages, 7 figures, Under review as a conference pape
    corecore