3,494 research outputs found

    Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning

    Full text link
    Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hierarchical spatial-temporal nature of human skeletons. Different from such superficial supervision at the video level, we propose a self-supervised hierarchical pre-training scheme incorporated into a hierarchical Transformer-based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial, short-term, and long-term temporal dependencies at frame, clip, and video levels, respectively. To evaluate the proposed self-supervised pre-training scheme with Hi-TRS, we conduct extensive experiments covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned by our model in the pre-training stage has strong transfer capability for different downstream tasks.Comment: Accepted to ECCV 202

    PredNet and Predictive Coding: A Critical Review

    Full text link
    PredNet, a deep predictive coding network developed by Lotter et al., combines a biologically inspired architecture based on the propagation of prediction error with self-supervised representation learning in video. While the architecture has drawn a lot of attention and various extensions of the model exist, there is a lack of a critical analysis. We fill in the gap by evaluating PredNet both as an implementation of the predictive coding theory and as a self-supervised video prediction model using a challenging video action classification dataset. We design an extended model to test if conditioning future frame predictions on the action class of the video improves the model performance. We show that PredNet does not yet completely follow the principles of predictive coding. The proposed top-down conditioning leads to a performance gain on synthetic data, but does not scale up to the more complex real-world action classification dataset. Our analysis is aimed at guiding future research on similar architectures based on the predictive coding theory

    Slow and steady feature analysis: higher order temporal coherence in video

    Full text link
    How can unlabeled video augment visual learning? Existing methods perform "slow" feature analysis, encouraging the representations of temporally close frames to exhibit only small differences. While this standard approach captures the fact that high-level visual signals change slowly over time, it fails to capture *how* the visual content changes. We propose to generalize slow feature analysis to "steady" feature analysis. The key idea is to impose a prior that higher order derivatives in the learned feature space must be small. To this end, we train a convolutional neural network with a regularizer on tuples of sequential frames from unlabeled video. It encourages feature changes over time to be smooth, i.e., similar to the most recent changes. Using five diverse datasets, including unlabeled YouTube and KITTI videos, we demonstrate our method's impact on object, scene, and action recognition tasks. We further show that our features learned from unlabeled video can even surpass a standard heavily supervised pretraining approach.Comment: in Computer Vision and Pattern Recognition (CVPR) 2016, Las Vegas, NV, June 201

    ATM: Action Temporality Modeling for Video Question Answering

    Full text link
    Despite significant progress in video question answering (VideoQA), existing methods fall short of questions that require causal/temporal reasoning across frames. This can be attributed to imprecise motion representations. We introduce Action Temporality Modeling (ATM) for temporality reasoning via three-fold uniqueness: (1) rethinking the optical flow and realizing that optical flow is effective in capturing the long horizon temporality reasoning; (2) training the visual-text embedding by contrastive learning in an action-centric manner, leading to better action representations in both vision and text modalities; and (3) preventing the model from answering the question given the shuffled video in the fine-tuning stage, to avoid spurious correlation between appearance and motion and hence ensure faithful temporality reasoning. In the experiments, we show that ATM outperforms previous approaches in terms of the accuracy on multiple VideoQAs and exhibits better true temporality reasoning ability

    Time-Contrastive Networks: Self-Supervised Learning from Video

    Full text link
    We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a metric learning loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. In other words, the model simultaneously learns to recognize what is common between different-looking images, and what is different between similar-looking images. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitat
    • …
    corecore