28 research outputs found

    Where Next for Formal Methods?

    Get PDF

    Where Next for Formal Methods?

    Full text link

    Model checking concurrent and real-time systems : the PAT approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Graph generation to statically represent CSP processes

    Full text link
    The CSP language allows the specification and verification of complex concurrent systems. Many analyses for CSP exist that have been successfully applied in different industrial projects. However, the cost of the analyses performed is usually very high, and sometimes prohibitive, due to the complexity imposed by the non-deterministic execution order of processes and to the restrictions imposed on this order by synchronizations. In this work, we define a data structure that allows us to statically simplify a specification before the analyses. This simplification can drastically reduce the time needed by many CSP analyses. We also introduce an algorithm able to automatically generate this data structure from a CSP specification. The algorithm has been proved correct and its implementation for the CSP's animator ProB is publicly available. © 2011 Springer-Verlag.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under grant ACOMP/2010/042, and by the Universidad Politécnica de Valencia (Program PAID-06-08). Salvador Tamarit was partially supported by the Spanish MICINN under FPI grant BES-2009-015019.Llorens Agost, ML.; Oliver Villarroya, J.; Silva Galiana, JF.; Tamarit Muñoz, S. (2011). Graph generation to statically represent CSP processes. En Logic-Based Program Synthesis and Transformation. Springer Verlag (Germany). 6564:52-66. https://doi.org/10.1007/978-3-642-20551-4_4S52666564Brassel, B., Hanus, M., Huch, F., Vidal, G.: A Semantics for Tracing Declarative Multi-paradigm Programs. In: Moggi, E., Warren, D.S. (eds.) 6th ACM SIGPLAN Int’l Conf. on Principles and Practice of Declarative Programming (PPDP 2004), pp. 179–190. ACM, New York (2004)Butler, M., Leuschel, M.: Combining CSP and B for specification and property verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005)Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River (1985)Kavi, K.M., Sheldon, F.T., Shirazi, B., Hurson, A.R.: Reliability Analysis of CSP Specifications using Petri Nets and Markov Processes. In: 28th Annual Hawaii Int’l Conf. on System Sciences (HICSS 1995). Software Technology, vol. 2, pp. 516–524. IEEE Computer Society, Washington, DC, USA (1995)Ladkin, P., Simons, B.: Static Deadlock Analysis for CSP-Type Communications. In: Responsive Computer Systems (Ch. 5). Kluwer Academic Publishers, Dordrecht (1995)Leuschel, M., Butler, M.: ProB: an Automated Analysis Toolset for the B Method. Journal of Software Tools for Technology Transfer 10(2), 185–203 (2008)Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Static Slicing of CSP Specifications. In: Hanus, M. (ed.) 18th Int’l Symp. on Logic-Based Program Synthesis and Transformation (LOPSTR 2008), pp. 141–150. Technical report, DSIC-II/09/08, Universidad Politécnica de Valencia (July 2008)Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: SOC: a Slicer for CSP Specifications. In: Puebla, G., Vidal, G. (eds.) 2009 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation (PEPM 2009), pp. 165–168. ACM, New York (2009)Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: The MEB and CEB static analysis for CSP specifications. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 103–118. Springer, Heidelberg (2009)Llorens, M., Oliver, J., Silva, J., Tamarit, S.: A Semantics to Generate the Context-sensitive Synchronized Control-Flow Graph (extended). Technical report DSIC, Universidad Politécnica de Valencia, Valencia, Spain (June 2010), http://www.dsic.upv.es/~jsilvaLlorens, M., Oliver, J., Silva, J., Tamarit, S.: Transforming Communicating Sequential Processes to Petri Nets. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Romero, M.L. (eds.) Seventh Int’l Conference on Engineering Computational Technology (ICECT 2010). Civil-Comp Press, Stirlingshire, UK, Paper 26 (2010)Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M., Scattergood, J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining Philosophers for Deadlock. In: Brinksma, E., Cleaveland, R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995)Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River (2005

    Shared Memory Concurrent System Verification using Kronecker Algebra

    Full text link
    The verification of multithreaded software is still a challenge. This comes mainly from the fact that the number of thread interleavings grows exponentially in the number of threads. The idea that thread interleavings can be studied with a matrix calculus is a novel approach in this research area. Our sparse matrix representations of the program are manipulated using a lazy implementation of Kronecker algebra. One goal is the generation of a data structure called Concurrent Program Graph (CPG) which describes all possible interleavings and incorporates synchronization while preserving completeness. We prove that CPGs in general can be represented by sparse adjacency matrices. Thus the number of entries in the matrices is linear in their number of lines. Hence efficient algorithms can be applied to CPGs. In addition, due to synchronization only very small parts of the resulting matrix are actually needed, whereas the rest is unreachable in terms of automata. Thanks to the lazy implementation of the matrix operations the unreachable parts are never calculated. This speeds up processing significantly and shows that this approach is very promising. Various applications including data flow analysis can be performed on CPGs. Furthermore, the structure of the matrices can be used to prove properties of the underlying program for an arbitrary number of threads. For example, deadlock freedom is proved for a large class of programs.Comment: 31 page

    Calculating τ-confluence compositionally

    Get PDF
    τ-confluence is a reduction technique used in enumerative model-checking of labeled transition systems to avoid the state explosion problem. In this paper, we propose a new on-the-fly algorithm to calculate partial τ-confluence, and propose new techniques to do so on large systems in a compositional manner. Using information inherent in the way a large system is composed of smaller systems, we show how we can deduce partial τ-confluence in a computationally cheap manner. Finally, these techniques are applied to a number of case studies, including the rel/REL atomic multicast protocol.peer-reviewe

    Slicing Techniques Applied to Concurrent Languages

    Full text link
    In this thesis are presented different program slicing techniques for two concurrent languages: CSP and Petri Nets. As for CSP, two static slices are introduced, using both a new kind of graph. Furthermore, their implementation is also presented and tested. As for Petri Nets, two dynamic slicing techniques are proposed.Tamarit Muñoz, S. (2008). Slicing Techniques Applied to Concurrent Languages. http://hdl.handle.net/10251/13627Archivo delegad

    Comparative Studies, Formal Semantics and PVS Encoding of CSP#

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Verification of timed process algebra and beyond

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore