51,237 research outputs found

    A grid-enabled problem solving environment for parallel computational engineering design

    Get PDF
    This paper describes the development and application of a piece of engineering software that provides a problem solving environment (PSE) capable of launching, and interfacing with, computational jobs executing on remote resources on a computational grid. In particular it is demonstrated how a complex, serial, engineering optimisation code may be efficiently parallelised, grid-enabled and embedded within a PSE. The environment is highly flexible, allowing remote users from different sites to collaborate, and permitting computational tasks to be executed in parallel across multiple grid resources, each of which may be a parallel architecture. A full working prototype has been built and successfully applied to a computationally demanding engineering optimisation problem. This particular problem stems from elastohydrodynamic lubrication and involves optimising the computational model for a lubricant based on the match between simulation results and experimentally observed data

    Adaptive control in rollforward recovery for extreme scale multigrid

    Full text link
    With the increasing number of compute components, failures in future exa-scale computer systems are expected to become more frequent. This motivates the study of novel resilience techniques. Here, we extend a recently proposed algorithm-based recovery method for multigrid iterations by introducing an adaptive control. After a fault, the healthy part of the system continues the iterative solution process, while the solution in the faulty domain is re-constructed by an asynchronous on-line recovery. The computations in both the faulty and healthy subdomains must be coordinated in a sensitive way, in particular, both under and over-solving must be avoided. Both of these waste computational resources and will therefore increase the overall time-to-solution. To control the local recovery and guarantee an optimal re-coupling, we introduce a stopping criterion based on a mathematical error estimator. It involves hierarchical weighted sums of residuals within the context of uniformly refined meshes and is well-suited in the context of parallel high-performance computing. The re-coupling process is steered by local contributions of the error estimator. We propose and compare two criteria which differ in their weights. Failure scenarios when solving up to 6.9â‹…10116.9\cdot10^{11} unknowns on more than 245\,766 parallel processes will be reported on a state-of-the-art peta-scale supercomputer demonstrating the robustness of the method
    • …
    corecore