15,288 research outputs found

    Hierarchical clustering with Membrane Computing.

    Get PDF
    In this paper we approach the problem of hierarchical clustering through membrane computing. A specific P system with external output is designed for each Boolean matrix associated with a finite set of individuals. The computation of the system allows us to obtain one of the possible classifications in a non-deterministic way. The amount of resources required in the construction is polynomial in the number of individuals and of characteristics analyzed.Ministerio de Educación y Ciencia TIN2006-13425Junta de Andalucía TIC-58

    Hierarchical Clustering with Membrane Computing

    Get PDF
    In this paper we approach the problem of hierarchical clustering through membrane computing. A specific P system with external output is designed for each Boolean matrix associated with a finite set of individuals. The computation of the system allows us to obtain one of the possible classifications in a non-deterministic way. The amount of resources required in the construction is polynomial in the number of individuals and of characteristics analyzed

    Deep Neural Networks - A Brief History

    Full text link
    Introduction to deep neural networks and their history.Comment: 14 pages, 14 figure

    A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation

    Full text link
    Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.Comment: Accepted by Journal of Structural Biolog

    Analysis of Genetic Interaction Maps Reveals Functional Pleiotropy

    Get PDF
    Epistatic or genetic interactions, representing the effects of mutations on the phenotypes caused by other mutations, can be very helpful for uncovering functional relationships between genes. Recently, the Epistasis Miniarray Profile (E-MAP) method has emerged as a powerful approach for identifying such interactions systematically. As part of this approach, hierarchical clustering is used to partition genes into groups on the basis of the similarity between their global interaction profiles. Here we present an original biclustering algorithm for identifying groups of functionally related genes from E-MAP data in a manner that allows individual genes to be assigned to more than one functional group. This enables investigation of the pleiotropic nature of gene function, a goal that cannot be achieved with hierarchical clustering. The performance of our algorithm is illustrated by applying it to two E-MAP datasets and an E-MAP-like in silico dataset for the yeast S. cerevisiae. In addition to identifying the majority of the functional modules reported in these studies, our algorithm uncovers many recently documented and novel multi-functional relationships between genes and gene groups

    Deep Gaussian Mixture Models

    Get PDF
    Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.Comment: 19 pages, 4 figure

    Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions

    Get PDF
    This work is dedicated to the simulation of full cycles of the electrical activity of the heart and the corresponding body surface potential. The model is based on a realistic torso and heart anatomy, including ventricles and atria. One of the specificities of our approach is to model the atria as a surface, which is the kind of data typically provided by medical imaging for thin volumes. The bidomain equations are considered in their usual formulation in the ventricles, and in a surface formulation on the atria. Two ionic models are used: the Courtemanche-Ramirez-Nattel model on the atria, and the "Minimal model for human Ventricular action potentials" (MV) by Bueno-Orovio, Cherry and Fenton in the ventricles. The heart is weakly coupled to the torso by a Robin boundary condition based on a resistor- capacitor transmission condition. Various ECGs are simulated in healthy and pathological conditions (left and right bundle branch blocks, Bachmann's bundle block, Wolff-Parkinson-White syndrome). To assess the numerical ECGs, we use several qualitative and quantitative criteria found in the medical literature. Our simulator can also be used to generate the signals measured by a vest of electrodes. This capability is illustrated at the end of the article
    corecore