591 research outputs found

    Hierarchical Clustering of Complex Symbolic Data and Application for Emitter Identification

    Get PDF
    It is well-known that the values of symbolic variables may take various forms such as an interval, a set of stochastic measurements of some underlying patterns or qualitative multi-values and so on. However, the majority of existing work in symbolic data analysis still focuses on interval values. Although some pioneering work in stochastic pattern based symbolic data and mixture of symbolic variables has been explored, it still lacks flexibility and computation efficiency to make full use of the distinctive individual symbolic variables. Therefore, we bring forward a novel hierarchical clustering method with weighted general Jaccard distance and effective global pruning strategy for complex symbolic data and apply it to emitter identification. Extensive experiments indicate that our method has outperformed its peers in both computational efficiency and emitter identification accuracy.Peer reviewe

    Artificial intelligence methods for security and cyber security systems

    Get PDF
    This research is in threat analysis and countermeasures employing Artificial Intelligence (AI) methods within the civilian domain, where safety and mission-critical aspects are essential. AI has challenges of repeatable determinism and decision explanation. This research proposed methods for dense and convolutional networks that provided repeatable determinism. In dense networks, the proposed alternative method had an equal performance with more structured learnt weights. The proposed method also had earlier learning and higher accuracy in the Convolutional networks. When demonstrated in colour image classification, the accuracy improved in the first epoch to 67%, from 29% in the existing scheme. Examined in transferred learning with the Fast Sign Gradient Method (FSGM) as an analytical method to control distortion of dissimilarity, a finding was that the proposed method had more significant retention of the learnt model, with 31% accuracy instead of 9%. The research also proposed a threat analysis method with set-mappings and first principle analytical steps applied to a Symbolic AI method using an algebraic expert system with virtualized neurons. The neural expert system method demonstrated the infilling of parameters by calculating beamwidths with variations in the uncertainty of the antenna type. When combined with a proposed formula extraction method, it provides the potential for machine learning of new rules as a Neuro-Symbolic AI method. The proposed method uses extra weights allocated to neuron input value ranges as activation strengths. The method simplifies the learnt representation reducing model depth, thus with less significant dropout potential. Finally, an image classification method for emitter identification is proposed with a synthetic dataset generation method and shows the accurate identification between fourteen radar emission modes with high ambiguity between them (and achieved 99.8% accuracy). That method would be a mechanism to recognize non-threat civil radars aimed at threat alert when deviations from those civilian emitters are detected

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    A Flexible Methodology to Sectorize Water Supply Networks Based on Social Network Theory Concepts and on Multi-objective Optimization

    Full text link
    A novel methodology to sectorize water supply networks (WSNs) depending on a main transmission line is presented in this paper. The methodology is based on concepts derived from the social network theory and graph theory (namely, community detection and shortest path respectively); and also on a multi-objective optimization process by means of agent swarm optimization (ASO). A series of energy, operative, and economic criteria are optimized in this process. The core idea is to form sectors over the distribution network based on communities found using a community detection algorithm (Walktrap). The methodology is flexible and enables the technical staff in water utilities to make decisions at different stages. It has been tested by generating four feasible solutions over a portion of a real WSN.Campbell-Gonzalez, E.; Izquierdo Sebastián, J.; Montalvo Arango, I.; Ilaya-Ayza, AE.; Pérez García, R.; Tavera, M. (2016). A Flexible Methodology to Sectorize Water Supply Networks Based on Social Network Theory Concepts and on Multi-objective Optimization. Journal of Hydroinformatics. 18(1):62-76. doi:10.2166/hydro.2015.146S627618

    Spectrum sensing for cognitive radio and radar systems

    Get PDF
    The use of the radio frequency spectrum is increasing at a rapid rate. Reliable and efficient operation in a crowded radio spectrum requires innovative solutions and techniques. Future wireless communication and radar systems should be aware of their surrounding radio environment in order to have the ability to adapt their operation to the effective situation. Spectrum sensing techniques such as detection, waveform recognition, and specific emitter identification are key sources of information for characterizing the surrounding radio environment and extracting valuable information, and consequently adjusting transceiver parameters for facilitating flexible, efficient, and reliable operation. In this thesis, spectrum sensing algorithms for cognitive radios and radar intercept receivers are proposed. Single-user and collaborative cyclostationarity-based detection algorithms are proposed: Multicycle detectors and robust nonparametric spatial sign cyclic correlation based fixed sample size and sequential detectors are proposed. Asymptotic distributions of the test statistics under the null hypothesis are established. A censoring scheme in which only informative test statistics are transmitted to the fusion center is proposed for collaborative detection. The proposed detectors and methods have the following benefits: employing cyclostationarity enables distinction among different systems, collaboration mitigates the effects of shadowing and multipath fading, using multiple strong cyclic frequencies improves the performance, robust detection provides reliable performance in heavy-tailed non-Gaussian noise, sequential detection reduces the average detection time, and censoring improves energy efficiency. In addition, a radar waveform recognition system for classifying common pulse compression waveforms is developed. The proposed supervised classification system classifies an intercepted radar pulse to one of eight different classes based on the pulse compression waveform: linear frequency modulation, Costas frequency codes, binary codes, as well as Frank, P1, P2, P3, and P4 polyphase codes. A robust M-estimation based method for radar emitter identification is proposed as well. A common modulation profile from a group of intercepted pulses is estimated and used for identifying the radar emitter. The M-estimation based approach provides robustness against preprocessing errors and deviations from the assumed noise model

    Pipe failure prediction and impacts assessment in a water distribution network

    Get PDF
    Abstract Water distribution networks (WDNs) aim to provide water with desirable quantity, quality and pressure to the consumers. However, in case of pipe failure, which is the cumulative effect of physical, operational and weather-related factors, the WDN might fail to meet these objectives. Rehabilitation and replacement of some components of WDNs, such as pipes, is a common practice to improve the condition of the network to provide an acceptable level of service. The overall aim of this thesis is to predict—long-term, annually and short-term—the pipe failure propensity and assess the impacts of a single pipe failure on the level of service. The long-term and annual predictions facilitate the need for effective capital investment, whereas the short-term predictions have an operational use, enabling the water utilities to adjust the daily allocation and planning of resources to accommodate possible increase in pipe failure. The proposed methodology was implemented to the cast iron (CI) pipes in a UK WDN. The long-term and annual predictions are made using a novel combination of Evolutionary Polynomial Regression (EPR) and K-means clustering. The inclusion of K-means improves the predictions’ accuracy by using a set of models instead of a single model. The long-term predictive models consider physical factors, while the annual predictions also include weather-related factors. The analysis is conducted on a group level assuming that pipes with similar properties have similar breakage patterns. Soil type is another aggregation criterion since soil properties are associated with the corrosion of metallic pipes. The short-term predictions are based on a novel Artificial Neural Network (ANN) model that predicts the variations above a predefined threshold in the number of failures in the following days. The ANN model uses only existing weather data to make predictions reducing their uncertainty. The cross-validation technique is used to derive an accurate estimate of accuracy of EPR and ANN models by guaranteeing that all observations are used for both training and testing, and each observation is used for testing only once. The impact of pipe failure is assessed considering its duration, the topology of the network, the geographic location of the failed pipe and the time. The performance indicators used are the ratio of unsupplied demand and the number of customers with partial or no supply. Two scenarios are examined assuming that the failure occurs when there is a peak in either pressure or demand. The pressure-deficient conditions are simulated by introducing a sequence of artificial elements to all the demand nodes with pressure less than the required. This thesis proposes a new combination of a group-based method for deriving the failure rate and an individual-pipe method for evaluating the impacts on the level of service. Their conjunction indicates the most critical pipes. The long-term approach improves the accuracy of predictions, particularly for the groups with very low or very high failure frequency, considering diameter, age and length. The annual predictions accurately predict the fluctuation of failure frequency and its peak during the examined period. The EPR models indicate a strong direct relationship between low temperatures and failure frequency. The short-term predictions interpret the intra-year variation of failure frequency, with most failures occurring during the coldest months. The exhaustive trials led to the conclusion that the use of four consecutive days as input and the following two days as output results in the highest accuracy. The analysis of the relative significance of each input variable indicates that the variables that capture the intensity of low temperatures are the most influential. The outputs of the impact assessment indicate that the failure of most of the pipes in both scenarios (i.e. peak in pressure and demand) would have low impacts (i.e. low ratio of unsupplied demand and small number of affected nodes). This can be explained by the fact that the examined network is a large real-life network, and a single failure of a distribution pipe is likely to cause pressure-deficient conditions in a small part of it, whereas performance elsewhere is mostly satisfactory. Furthermore, the complex structure of the WDN allows them to recover from local pipe failures, exploiting the topological redundancy provided by closed loops, so that the flow could reach a given demand node through alternative paths

    Analog-Aware Schematic Synthesis

    Get PDF

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces
    • …
    corecore