1,072 research outputs found

    The cloud-to-edge-to-IoT continuum as an enabler for search and rescue operations

    Get PDF
    When a natural or human disaster occurs, time is critical and often of vital importance. Data from the incident area containing the information to guide search and rescue (SAR) operations and improve intervention effectiveness should be collected as quickly as possible and with the highest accuracy possible. Nowadays, rescuers are assisted by different robots able to fly, climb or crawl, and with different sensors and wireless communication means. However, the heterogeneity of devices and data together with the strong low-delay requirements cause these technologies not yet to be used at their highest potential. Cloud and Edge technologies have shown the capability to offer support to the Internet of Things (IoT), complementing it with additional resources and functionalities. Nonetheless, building a continuum from the IoT to the edge and to the cloud is still an open challenge. SAR operations would benefit strongly from such a continuum. Distributed applications and advanced resource orchestration solutions over the continuum in combination with proper software stacks reaching out to the edge of the network may enhance the response time and effective intervention for SAR operation. The challenges for SAR operations, the technologies, and solutions for the cloud-to-edge-to-IoT continuum will be discussed in this paper

    Structure and topology of transcriptional regulatory networks and their applications in bio-inspired networking

    Get PDF
    Biological networks carry out vital functions necessary for sustenance despite environmental adversities. Transcriptional Regulatory Network (TRN) is one such biological network that is formed due to the interaction between proteins, called Transcription Factors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional robustness in the face of perturbation or mutation: a property that is proven to be a result of its underlying network topology. In this thesis, we first propose a three-tier topological characterization of TRN to analyze the interplay between the significant graph-theoretic properties of TRNs such as scale-free out-degree distribution, low graph density, small world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological robustness as well as information spread in TRNs. With the understanding of the TRN topology, we explore its potential use in design of fault-tolerant communication topologies. To this end, we first propose an edge rewiring mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes, called hubs, while preserving its other significant graph-theoretic properties. We apply the rewired TRN topologies in the design of wireless sensor networks that are less vulnerable to targeted node failure. Similarly, we apply the TRN topology to address the issues of robustness and energy-efficiency in the following networking paradigms: robust yet energy-efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection framework for smart city applications and a data transfer framework deployed over a fog computing platform for collaborative sensing --Abstract, page iii

    The logic of tact:How decisions happen in situations of crisis

    Get PDF
    The mass-migration of refugees in the fall 2015 posed an immense humanitarian and logistical challenge: exhausted from their week-long journeys, refugees arrived in Vienna in need of care, shelter, food, medical aid, and onward transport. The refugee crisis was managed by an emerging polycentric and inter-sectoral collective of organizations. In this paper, we investigate how, during such a situation, leaders of these organizations made decisions in concert with each other and hence sustained the collective's capacity to act collectively. We ask: what was the logic of decision-making that orchestrated collective action during the crisis? In answering this question, we make the following contribution: departing from March's logics of consequences and appropriateness as well as Weick's work on sensemaking during crisis, we introduce an alternative logic that informed decision-making: the logic of tact. With this concept we (a) offer a better understanding of how managers make decisions under the condition of bounded rationality and the simultaneous transgression of their institutional identity in situations of crisis; and we (b) show that in decision-making under duress cognition is neither ahead of action, nor is action ahead of cognition; rather, tact explicates the rapid switching between cognition and action, orchestrating decision-making through this interplay

    Research on improving maritime emergency management based on AI and VR in Tianjin Port

    Get PDF

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Enhancing the Internet of Things with Knowledge-Driven Software-Defined Networking Technology : Future Perspectives

    Get PDF
    The Internet of Things (IoT) connects smart devices to enable various intelligent services. The deployment of IoT encounters several challenges, such as difficulties in controlling and managing IoT applications and networks, problems in programming existing IoT devices, long service provisioning time, underused resources, as well as complexity, isolation and scalability, among others. One fundamental concern is that current IoT networks lack flexibility and intelligence. A network-wide flexible control and management are missing in IoT networks. In addition, huge numbers of devices and large amounts of data are involved in IoT, but none of them have been tuned for supporting network management and control. In this paper, we argue that Software-defined Networking (SDN) together with the data generated by IoT applications can enhance the control and management of IoT in terms of flexibility and intelligence. We present a review for the evolution of SDN and IoT and analyze the benefits and challenges brought by the integration of SDN and IoT with the help of IoT data. We discuss the perspectives of knowledge-driven SDN for IoT through a new IoT architecture and illustrate how to realize Industry IoT by using the architecture. We also highlight the challenges and future research works toward realizing IoT with the knowledge-driven SDN.Peer reviewe
    • 

    corecore