68 research outputs found

    Hierarchical Cascade of Classifiers for Efficient Poselet Evaluation

    Get PDF
    Poselets have been used in a variety of computer vision tasks, such as detection, segmentation, action classification, pose estimation and action recognition, often achieving state-of-the-art performance. Poselet evaluation, however, is computationally intensive as it involves running thousands of scanning window classifiers. We present an algorithm for training a hierarchical cascade of part-based detectors and apply it to speed up poselet evaluation. Our cascade hierarchy leverages common components shared across poselets. We generate a family of cascade hierarchies, including trees that grow logarithmically on the number of poselet classifiers. Our algorithm, under some reasonable assumptions, finds the optimal tree structure that maximizes speed for a given target detection rate. We test our system on the PASCAL dataset and show an order of magnitude speedup at less than 1% loss in AP

    Hierarchical Cascade of Classifiers for Efficient Poselet Evaluation

    Get PDF
    Poselets have been used in a variety of computer vision tasks, such as detection, segmentation, action classification, pose estimation and action recognition, often achieving state-of-the-art performance. Poselet evaluation, however, is computationally intensive as it involves running thousands of scanning window classifiers. We present an algorithm for training a hierarchical cascade of part-based detectors and apply it to speed up poselet evaluation. Our cascade hierarchy leverages common components shared across poselets. We generate a family of cascade hierarchies, including trees that grow logarithmically on the number of poselet classifiers. Our algorithm, under some reasonable assumptions, finds the optimal tree structure that maximizes speed for a given target detection rate. We test our system on the PASCAL dataset and show an order of magnitude speedup at less than 1% loss in AP

    Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation

    Full text link
    This paper proposes a new hybrid architecture that consists of a deep Convolutional Network and a Markov Random Field. We show how this architecture is successfully applied to the challenging problem of articulated human pose estimation in monocular images. The architecture can exploit structural domain constraints such as geometric relationships between body joint locations. We show that joint training of these two model paradigms improves performance and allows us to significantly outperform existing state-of-the-art techniques

    Discriminative latent variable models for visual recognition

    Get PDF
    Visual Recognition is a central problem in computer vision, and it has numerous potential applications in many dierent elds, such as robotics, human computer interaction, and entertainment. In this dissertation, we propose two discriminative latent variable models for handling challenging visual recognition problems. In particular, we use latent variables to capture and model various prior knowledge in the training data. In the rst model, we address the problem of recognizing human actions from still images. We jointly consider both poses and actions in a unied framework, and treat human poses as latent variables. The learning of this model follows the framework of latent SVM. Secondly, we propose another latent variable model to address the problem of automated tag learning on YouTube videos. In particular, we address the semantic variations (sub-tags) of the videos which have the same tag. In the model, each video is assumed to be associated with a sub-tag label, and we treat this sub-tag label as latent information. This model is trained using a latent learning framework based on LogitBoost, which jointly considers both the latent sub-tag label and the tag label. Moreover, we propose a novel discriminative latent learning framework, kernel latent SVM, which combines the benet of latent SVM and kernel methods. The framework of kernel latent SVM is general enough to be applied in many applications of visual recognition. It is also able to handle complex latent variables with interdependent structures using composite kernels
    • …
    corecore